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Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas
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It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations
whose form can be explicitly computed. In particular, it is possible to cofitedluce the chaotic diffusion in
the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged
test particles in a turbulent electric field across the confining magnetic field in controlled thermonuclear fusion
devices. Though still far from practical applications, this result suggests that some strategy to control turbulent
transport in magnetized plasmas, in particular, tokamaks, is conceivable. The robustness of the control is
investigated in terms of a departure from the optimum magnitude, of a varying cutoff at large wave vectors,
and of random errors on the phases of the modes. In all three cases, there is a significant region of maximum
efficiency in the vicinity of the optimum control term.
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[. INTRODUCTION the system in order to act on periodic orbits: One can en-
. . o hance the stability of elliptic periodic orbits by zeroing their
Transport induced by chaotic motion is now a standargesidueg3] or by stabilizing hyperbolic periodic orbif].
framework to analyze the properties of numerous systems. another idea to stabilize the system is to enlarge the

Since chaos can be harmful in_several contexts, during thghase space by coupling the system with an external system
last decade or so, much attention has been paid to the sp:

X i : and hence with additional degrees of freedom which makes
called topic oichaos con_troIHere the meaning ojon';rol 'S " the large system more regujdi5]. These embedding tech-
that one aims at reducing or suppressing chaos inducing gq,es are ‘similar to the above methods on the stabilization
relevant changg n _the transport properties, by means of 8f unstable periodic orbits; they are based on the construc-
small perturbation(either open-loop or closed-loop control tion of a dissipative system from the original Hamiltonian

Og dissipative s;(;ster_n[él,Z])_ so that the g”g'”a!' ﬁtruifture of System. The techniques developed for dissipative systems
the dc,yétem letir Investigation is su _stant_||? y kept unalean thus be applied to this modified system, such as, for
tered. Control ofhaotic transporproperties still remains an jricrance the targeting of periodic orbits.

open issue with considerable applications. A different approach is to modify the Hamiltonigor just

In the case of dISSIp.at'Ive systems, an 'eff!C|ent 'strategy 0E(he potentigl to control the original system. This approach is
control works by stabilizing unstable periodic orbits, where .1 \when one is able to act on this system with an external

the dyrzm'c_sl is eventually attracted. ?jl_mnz;rly, afirstidea t?srce. The interesting point is that the Hamiltonian structure
control Hamiltonian systems is to modify the parameters of s, jts number of degrees of freedom is preserved. So far,

the modifications of the Hamiltonian that have been pro-
posed in the literature are the following: the modification of

*Electronic address: ciraolo@arcetri.astro.it the integrable part of the Hamiltonigé], the control of a
"Electronic address: briolle@cpt.univ-mrs.fr system with large and nonsmooth external pulsgsa lo-
*Electronic address: chandre@cpt.univ-mrs.fr calized control with a modification in some specific regions
SElectronic address: floriani@cpt.univ-mrs.fr of phase spacE8], or a control using variations of the exter-
'Electronic address: lima@cpt.univ-mrs.fr nal field[9,10]. However, we notice that most of the modi-
"Electronic address: vittot@cpt.univ-mrs.fr fications of the potential that have been proposed so far are
** Electronic address: pettini@arcetri.astro.it tailored to specific examplgsvith the exception of the opti-
Electronic address: charles.figarella@cea.fr mal control [9]) and the required modifications are large
HElectronic address: philippe.ghendrih@cea.fr compared with the potential.
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Hamiltonian description of the microscopic origin of par- molecular diffusion coefficientD. When considering the
ticle transport usually involves a large number of particlessimulation of Eq.(1.1), the magnitude oD will govern the
Methods based on targeting and locking to islands of regulamesh size to store the field(x,t). For a vanishingly small
motions in a “chaotic sea” are of no practical use for con-diffusion D, there will be no cutoff of the small scales gen-
trolling when dealing simultaneously with a large number oferated by the simulation. This will require an infinite storage
unknown trajectories. Therefore, the most efficient procedureapability to describe the complexity @fx,t) that can ap-
appears to be to control the transport process with a smaflear even for a relatively smooth velocity field. To evaluate
perturbation, if any, making the system integrable or closethis property, the most straightforward description is given
to integrable. In what follows we show that it is actually by a Lagrangian approach. For the same transport process,
possible to control Hamiltonian chaos in this way by preservthe latter requires to solve the following equations of motion
ing the Hamiltonian structure. We describe a general methodf a passive tracefe.g., particle, fluid dropwhose Eulerian
for controlling nearly integrable Hamiltonian systems, andconcentration function ig(x,t),
we apply this technique to a model relevant to magnetized
plasmas. o —

Chaotic transport of particles advected by a turbulent x=vixD), (1.2
electric field with a strong magnetic field is associated wit
Hamiltonian dynamical systems under the approximation g}’lv
the guiding center motion due X B drift velocity. For an

hich in the case of a two-dimensional incompressible Euler
ow can be given by the form

appropriate choice of the turbulent electric field, it has been
shown that the resulting diffusive transport is then found to X = E( ) =v(x,t) = Viy= <_ APxY,D ) (1.3
agree with the experimental counterpgld]. It is clear that dt\y (XY, 1)

such an analysis is only a first step in the investigation and
understanding of turbulent plasma transport. The control ofvhere ¢ denotes the stream function of the Eulerian field
transport in magnetically confined plasmas is of major im-v(x,t), the trajectory of the tracer is denoted ki{t), and
portance in the long way to achieve controlled thermonucleavlz(—ay,ax)_ What is remarkable here is the Hamiltonian
fusion. Two major mechanisms have been proposed for sucktructure of the equations of motigfh.3), where the stream
a turbulent transport: transport governed by the fluctuationgunction ¢ plays the role of the Hamiltonian function amd
of the magnetic field and transport governed by fluctuationsind y play the role of the canonically conjugate variables.
of the electric field. There is presently a general consensus Wyith the exception of trivial velocity fields/ (such as a
consider, at low plasma pressure, that the latter mechanisghiform, parallel flow these equations of motion are in gen-
agrees with experimental eviden?]. In the area of trans-  eral nonlinear in the coordinates; in fact, if we even think of
port of trace impurities, i.e., that are sufficiently diluted so asa simple vortex, we realize that, and vy Must contain at
not to modify the electric field pattern, tfex B drift motion  |east one trigonometric function. Now, also without a stan-
of test particle should be the exact transport model. Even foglard (quadrati¢ kinetic energy term, this kind of Hamil-
this very restricted case, control of chaotic transport woulttonian dynamical system displays all the rich and complex
be very relevant for the thermonuclear fusion program. Thesghenomenology of the transition between regular and chaotic
possibility of reducing and even suppressing chaos combineghotions and between weak and strong chfbd]. Thus,
with the empirically found states of improved confinement ineven in the presence of rather regular Eulerian velocity pat-
tokamaks suggest to investigate the possibility to devise gerns, the solutions of Eq$l.2) and(1.3) can be very com-
strategy of control of chaotic transport through some smarplicated, with apparently no relation left withx, t). In other
perturbations acting at the microscopic level of charged parords, chaotic Lagrangian diffusion can take place also in
ticle motions. the presence of rather simple Eulerian velocity patterns. For
As in the current literature the electric turbulent transportrealistic simulation of Eq(1.1) a finite mesh size must be
in plasmas is mainly addressed in the Eulelidmd) frame-  introduced and accordingly the diffusion coefficightmust
work, let us first recall the difference between Lagrangianreach a finite value to smear out the small scales that cannot
and Eulerian descriptions of transport. We consider the adhe captured by the grid. If the velocity field is characterized
vection of a scalar quantity(x,t) describing, e.g., the con- py a large regular structure superimposed to small scale
centration of a passively transported entity. In a given Eulestructures, the output of the simulation can lead to the ab-
rian velocity fieldv(x,t) the transport of(x,t) is described sence of any diffusion but the molecular dfiel]. The dif-
by ficulty in the simulation of Eq.(1.1) will then lead to an
apparent conflict with a broad experimental evideft8].
9 0(x,1) Fv(x.t) - V 6(x.1) = DV2A(X. 1), (1.1) The most effic_ient means to_address the transport of passive
at scalars in a given velocity field(x,t) appears to follow a
Lagrangian approach that allows one to describe the motion
whereD is a molecular diffusion coefficient. This equation at all scales in space and time. The cost of this method will
holds for both neutral fluids and plasmas. If the figlck,t)  appear in the statistics that must be performed to obtain a
is given independently from the field(x,t), Eq. (1.1) is  general property of the system whenever a single trajectory
linear inv(x,t). The complexity of the field(x,t) will then  does not allow one to capture the properties of all possible
depend on both the complexity of the fialéx,t) and on the trajectories.
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When addressing plasma transport, Eulerian and Lagrangvheref is nonzero is finite or small enoughor f should be
ian approaches are combined to provide an analysis of thef a specific shapée.g., a sum of given Fourier modes or
transport properties. An equation similar to Ed.1) is  with a certain regularity Moreover, the control should be as
coupled to a vorticity equation defining the fiel¢x,t) [16]. simple as possible in view of future implementations in ex-
The Eulerian description is used to generate the velocity fielgheriments.
and a Lagrangian approach is used to follow trace impurities In Sec. Il, we explain the control theory of nearly inte-
and trace tritium that allows one to compare the simulationgrable Hamiltonian systems following R€gR0]. We show
to experimental datfl7]. that it is possible to construct and compute analytically a

A close analogy exists between the equations of motion o€ontrol termf of order € such that the controlled Hamil-
passive tracergl.3) and those of the guiding centers of tonianH.=Hy+€eV+f is integrable. In Sec. Ill, after defining
charged particles moving in strongly magnetized plasmathe model of interest to our study in Sec. lll A, we compute
and in the presence either of an electric field transverse to thenalytically the first terms of the expansion of the control
magnetic field or of an inhomogeneous component of théerm in Sec. Ill B. Some properties of the control term are
magnetic field itself. The electrostatic cade3] is modeled given in Sec. Il C. A numerical study of the effect of the

by control term on the dynamics is done extensively in Sec. IV.
It is shown that the chosen control term is able to drastically
‘= E<X> = CEx xB= E<— <9yV(X,y,t)) reduce the chaotic transport. In Sec. V, we study the effect of

dt\y/ B2 B\ aV(xyt) /)’ some truncations that aim at either simplifying the control

term or reducing the energy input to control the system: In
whereV is the electric potentiaE=-VV, andB=Be,. The  particular, we show that reducing the control term to its main

magnetic case is modeled by Fourier components or reducing the magnitude of the control

term is sufficient to govern a significant decrease of the cha-

_d(x) _ _ Uy (7 Ppo(X Y1) otic transport. Though, of course the optimal control is ob-
X=— =— X Vb, (x,H)=—— , . ; -

dt\y/ RB P RB\ 0P po(X,Y,1) tained with the full control term. These results indicate that

(1.4) this control of Hamiltonian systems is robust.

wherev, is the velocity along the field lineR the major Il. CONTROL THEORY OF HAMILTONIAN SYSTEMS
radius of the torus, ane,, the poloidal magnetic flux ) ) )
divided by 27. In both cases, the physically remarkable In this section, following the framework of Ref20] we
phenomenon—in complete analogy with the Lagrangiarﬁxmam the control theory of Har.mltonlan' systems. lebe
diffusion of passive scalars—is that even in the presencé€ vector space of” real functions defined on the phase
of rather regular space-time patterns of the electric field$Pace. FoH e A, let{H} be the linear operator acting o4
or of the magnetic inhomogeneities, the charged particle§uch that
can diffuse across the magnetic field which ceases to be
confining. The dynamical instability with respect to small
variations of the initial conditions, known as deterministic for anyH’ € A, where{-, -} is the Poisson bracket. Hengke
chaos, is the very source of the enhanced cross-field difis a Lie algebra. The time evolution of a functidhe A
fusion; it is “intrinsically” noncollisional and it turns out following the flow of H is given by
to be orders of magnitude larger than the collisional one
[11], sometimes even many orders of magnitude larger d_V:{H}V
[19]. dt '

In this paper, the problem we address is how to contro| , . .

S EORE o which is formally solved as

chaotic diffusion in such Hamiltonian models. In some range
of parameters, the problems can be considered as nearly in- V(t) = efhv(0),
tegrable. We consider the class of Hamiltonian systems =
which can be written in the fori=Hq+ eV that is an inte- 1| H iS time independent, and where

{HH ={H.H'},

grable HamiltonianH, (with action-angle variablgsplus a “
small perturbatioreV. et => —{H}",
The problem of control in Hamiltonian systems is the fol- n=0 N!

lowing one: For the perturbed Hamiltonidy+ €V, the aim
is to devise a control ternmh such that the dynamics of the
controlled HamiltoniarHy+€V+f has more regular trajecto-
ries (e.g., on invariant toyior less diffusion than the uncon- OteR, etv=v.

trolled one. Obviouslyf=-¢V is a solution since the result-

ing Hamiltonian is integrable. However, it is a uselessLet us now consider a given Hamiltoniad, € A. The op-
solution since the control is of the same magnitude as of therator{Hy} is not invertible since a derivation has always a
perturbation. For practical purposes, the desired control terrnontrivial kernel. For instancgHqtHq*=0 for any a such
should be smal{with respect to the perturbatiosV), local-  thatHy* e A. The vector space K@t} is the set of con-
ized in phase spageneaning that the subset of phase spacestants of motion. Hence we consider a pseudoinverse of

Any elementV € A such thatfH}V=0 is constant under the
flow of H, i.e.,
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{Ho}. We define a linear operatdf on A such that

{Ho}2F ={Ho}, (2.1

OVe A, {Ho{HoI'V}}={Ho V}.

The operatod” is not unique. Any other choice df’ satis-
fies that the range R§'-TI") is included into the kernel
Ker({Ho}?).

We define thenonresonaniperator\ and theresonant
operatorRk as

N={Ho}T",

R=1-N,

PHYSICAL REVIEW E 69, 056213(2004)

RV =2V, (A)x(w(A) -k = 0)ek?, (2.3
k

M= V(A x(w(A) -k # 0)eke, (2.4)
k

wherey(a=0) vanishes whemr# 0 and it is equal to 1 when
a=0.

From these operators defined for the integrable pirt
we construct a control term for the perturbed Hamiltonian
Ho+V whereV e A4, i.e., f is constructed such thaiy+V
+f is canonically conjugate tbly+RV.

Proposition 1 ForV e A andI" constructed fronH,, we
have the following equation:

where the operator 1 is the identity in the algebra of lineawhere

operators acting oml. We notice that Eq(2.1) becomes
{Hg}R =0,

which means that the range R of the operatorR is

included in KefHg}. A consequence is th&V is constant
under the flow ofH,, i.e., ef"RV=RV. We notice that
when{Hg} andI" commute,R and A are projectors, i.e.,
R?=R and N?=N. Moreover,
Rg R=Ker{H}, i.e.,
mentsRV whereV e A.

Let us now assume thét, is integrable with action-angle

variables(A ,¢) e B X T' whereB is an open set oR' and
T' is thel-dimensional torus. Thul,=Hy(A) and the Pois-
son brackefH,H’} between two elementd andH’ of A is

JH é’H’ dH gH’
HH}=Z -2

The operatofHg} acts onV expanded as follows:

V= Vi (A)Eke,

ke?!
as
{HolV(A,0) = Zia(A) -k Vi (A)E¥?,
k
where
aHg
A)=——.
o(A) A
A possible choice of is
Vi (A .
VA= S B g (o
kEZ| |w(A) . k
w(A)k#0

We notice that this choice df commutes with{H}.
For a givenV e A, RV is the resonant part &f and A/V
is the nonresonant part:

in this case we have
the constant of motion are the ele-

eMVH(Hy+V +f) =Hg+ RV, (2.5
1-etV
f(V) = e—{FV}’RV + {F } —FANV-V. (2.6)

We notice that the operatét —e ™V} /{T'V} is well defined
by the expansion

1-gt
{r'v}

(="
= (n+1)!

v,

Proof Sincee™ is invertible, Eq.(2.5) gives
f(V) = (™ - )Hy+ e VIRV - V.
We notice that the operater™'-1 can be divided byI'V},
oIV _
v

By using the relations

f(V) = {TV}Hy + e ™RV - V.

{I'VIHo ={I'V,Ho} = - {Hg}I'V
and
{HofI' =WV,

we have
f(v)=e ViRV + ]'_—_{FV}/\/V -V. 0
%
The control term can be expanded in power series as
f(v) = 2 -
n=1 (N 1)'

We notice that ifV is of ordere, f(V) is of orderé?.

{FV}”(n R+1)V. (2.7

Proposition 1 tells that the addition of a well chosen con-

trol term f makes the Hamiltonian canonically conjugate to
Ho+RV. It is also possible to show from Proposition 1 that
the flow of Hy+V+f is conjugate to the flow dfi;+ RV (see
Ref. [20]).

Proposition 2
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Ot e R, eHotV+fh =gVt gliHot  gRVE TV} such thatw is mapped onto a new frequency vector which

) ] has itsr last components equal to zero, wherdenotes the
The remarkable fact is that the flow &V commutes with  gimension of{k e 7' such that e-k=0}. In these new

the one ofH,, since{Hy}R=0. This allows the splitting of -, dinatesrV depends only om angles. This form of,

the flow of Ho+RV into a product. _ +RV is called theresonant normal formThe nonresonant
The notion of nonresonant Hamiltonian is defined by thecgse occurs when=0. Whenr=1 the normal form ofH,
following statement. _ _ +RV depends only on one angle, so it is integrable.
Definition Ho is nonresonant if and only iflJA In what follows, we will apply the control theory to a
€ B, w(A) k=0 impliesk=0. resonant Hamiltonian which models tEex B drift in mag-

If Ho is nonresonant then with the addition of a control netized plasmas.
termf, the HamiltoniarH,+V+f is canonically conjugate to
the integrable Hamiltoniakly+ RV sinceRV is only a func-
tion of the actiondsee Eq(2.3)]. Ill. CONTROL OF CHAOS IN A MODEL FOR E XB
If Hg is resonant an®RV=0, the controlled Hamiltonian DRIFT IN MAGNETIZED PLASMAS
H=Hy+V+f is conjugate tdH,.
In the caseRV=0, the serieg2.7), which gives the ex-
pansion of the control term, can be written as In the guiding center approximation, the equations of mo-
tion of a charged particle in the presence of a strong toroidal

A. The model

f(V) = i f., (2.9) magnetic field and of a time dependent electric field[a&}
=2 . d (x) c c (— ayv(x,y,t)>
wheref is of ordere® and given by the recursion formula x= dt y - B_ZE(X’t) XB= B ANy )’ (3.1
1 whereV is the electric potentialE=-VV, andB=Be,. The
fs=- ;{TV'fs-l}' (2.9 spatial coordinates andy, where(x,y) € R? play the role of

the canonically conjugate variables and the electric potential

wheref,=V. V(x,y,t) is the Hamiltonian of the problem. To define a
Remark A different approach of control has been devel- j,odel we choose

oped by Gallavotti in Ref[6]. The idea is to find a control

term (namedcounter term depending only on the actions, _ | 2m N
i.e., to findN such that V(x,t) = kEZZ Visin L k-x+g-okt|, (3.2

H(A, @) = Ho(A) + V(A,¢) - N(A) where ¢, are random phasédsiniformly distributed and Vj

is integrable. For isochronous systems, that is, decrease as a given function|kf, in agreement with experi-
mental datg21]. In principle one should use fab(k) the
HoA)=w-A, dispersion relation for electrostatic drift wavéshich are

thought to be responsible for the observed turbulendth a

or any functionh(w-A), it is shown that if the frequency . ;
vector satisfies a Diophantine condition and if the perturba—frequency broadening for eadhin order to model the ex-

tion is sufficiently small and smooth, such a control termp.e”m.e.ntally observed spect_ruS(k,w). T order to use a
exists. An algorithm to compute it by recursion is provideds',mpl'f",ad mode] we use in this papexk) =w, constant asa
by the proof. We notice that the resulting control teiis of ~ diSPersion relation. The phaseg are chosen at random in
the same order as the perturbation, and has the followingrder to mimic a turbulent field with the reasonable hope that
expansion: e properties of the realization thus obtained are not signifi-
cantly different from their average. In addition we take for
N(A) =RV + %R{FV}V+ O(&d), |Vi| a power law ink| to reproduce the spatial spectral char-
acteristics of the experiment&8k), see Ref[21]. Thus we

where we have seen from E@.3) that RV is only a func-  consider the following explicit form of the electric potential:

tion of the actions in the nonresonant case. The assumption .

that w is nonresonant is a crucial hypothesis in Gallavotti's a 1
renormalization approach. Otherwise, a counterterm which V(x,y,t):z > (nz+—mz)3’2
only depends on the actiods cannot be found. m,n=1
Our approach makes possible the construction of a control nP+mP<N?
term in the resonant case. The controlled Hamiltonian is con- 20
jugate toHy+RV, where RV depends on the angle and ac- Xsin T(nX+ my) + enm=wot | (3.9

tion variables in the resonant case. Therefore the controlled

Hamiltonian is not integrable in general. The new téRY By rescaling space and time, we can always assumelthat
which is always a conserved quantity is functionally inde-=1 andwy=27. In what follows, we choosBl=25. Figure 1
pendent ofH, since it depends on the angles. There exists ahows a visualization of the potential for0 anda=1.
linear canonical transformatidi’,¢’)=(‘TA, T 1¢), where  Since the model is fluctuating in time, the eddies of Fig. 1
Tis al X1 matrix with integer coefficients and determinant 1 are rapidly modified in time and where a vortex was ini-
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_dH__ov . _dH_ 9V
ay oy YT ax T ax

=1, (3.5

andE is given by takingH as constant along the trajectories.
We absorb the constan{B of Eg. (3.1) in the amplitudea

of Eq. (3.3, so that we can assume thaits small wherB is
large. Thus, for small values af Hamiltonian(3.4) is in the
form H=Hg+eV, which is an integrable Hamiltoniaki,
(with action-angle variablglus a small perturbatiogV. In

our caseHy=E, i.e., independent o%,y, and r, so thatA
=(E,x) and¢=(7,y) are action-angle coordinates fblg (y

can be considered as an angle but it is frozen by the flow of
Hy). We could have exchanged the rolexadndy. We have

0 0.2 0.4 0.6 0.8 1
X

_[dHg dHp\
FIG. 1. Contour plot olV(x,y,t) given by Eq.(3.3) for t=0, a o(A) = JE ' ax |~ (1,0,
=1, andN=25.
that is,H is resonangi.e., ®(A) -k =0 does not implyk =0].

tially present, an open line appears, and so on. In order to construct the operatdrs R, and N we consider

Two particular properties of the model, anisotropy and P P

propagation, have been observed: each image of the potential — = (——)

field shows an elongated structure of the eddies and super- de \dTdy

posing images obtained at different times a slight propagag

tion in they=x direction is found. However, this propagation

can easily be proved not to disturb the diffusive motion of

the guiding centers. The property of propagation can be eas-

ily understood analytically. In fact, restricting ourselves to

the most simplified case of an electric potential given onlylf we consider an elemeW(x,y, 7) of the algebraA, peri-

by a dominant modén=m=1) it is immediately evident that odic in time with period 1, we can write

at any given time the maxima and minima of the sine are ]

located on the lineg=—x+const. As the amplitudes are de- WXy, 7) = 2 Wi(x,y)e? ™,

creasing functions of and m, this structure is essentially kez

preserved also in the case of many waves. The property ofq the action of', R, and.\ operators oiW is given by

anisotropy is an effect of the random phases in producing

eddies that are irregular in space. WL, Y) i
We notice that there are two typical time scales in the rw= 2> =2

(Ha)=w() =

equations of motion: the drift characteristic timg inversely o 2Ik
proportional to the parameter and the period of oscillation
r,, of all the waves that enter the potential. The competition RW=Wy(x,y),
between these two time scales determines what kind of dif-
fusive behavior is observefl1]. In what follows we con- _ ik
sider the case of weak or intermediate chaotic dynaxuics A= go WGy e (3.8
existence of ordered and chaotic trajectorieshich ]
corresponds to the quasilinear diffusion regittsee Sec. If we apply the operatof” to V given by Eq.(3.3), we
IV A), whereas in the case of fully developed chaos thafbtain
corresponds to the so-called Bohm diffusion regime one has a 1
to introduce a slightly more complicated approdeke re- Iv=—— > RN
mark at the end of Sec. III')C (2m)* e (N4
n2+m?<N?
B. Computation of the control term Xcog2m(nx+my) + o,m— 277]. (3.7

We extend the phase spaogy) into (x,y,E, 7) where the  SinceV is periodic in time with zero mean value, we have
new dynamical variable evolves ag(t)=t+7(0) andEisits ~ RV=0. In this case, as we have seen in the preceding sec-
canonical conjugate. The autonomous Hamiltonian of thdion, Egs.(2.8) and (2.9) give the expansion of the control

model is term. If we add the exact expression of the control term to
Ho+V, the effect on the flow is the confinement of the mo-
H(x,y,E,7) =E+V(x,y,7). (3.9 tion, i.e., the fluctuations of the trajectories of the particles,
around their initial positions, are uniformly bounded for any
The equations of motion are time [20].
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0 0.2 0.4 0.6 0.8 1
X

FIG. 2. Contour plot off, given by Eq.(3.8) for a=1 andN
=25.
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0 0.2 0.4 0.6 0.8 1
X

FIG. 3. Contour plot off; given by Eq.(3.9) for t=0,a=1, and
N=25.

In the present paper we show that truncations of the exact 3

control termf are able to regularize the dynamics and to
slow down the diffusion. We compute the first terms of the

series of the exact control termisandf;. From Eq.(2.9) we
have

fo(V) == 3{TV,V},

and using the expressions dfandI'V, we have

2
a 1
fo(x,7)=—
2,7 2(277)3”1%1 (n + md)¥2(n2 + m2) 2
N, My

x{cog2m(nx + myy) + ¢y m = 2777],
sin27(nyx + myy) + Pn,m, ~ 2mrl},

where{-, -} is the Poisson bracket for,y coordinates, i.e.,
for two generic functiond and g depending orx,y, r, we
have

_ofag_ofdg

T Ixdy  dyax

From Egs.(3.3) and(3.7) we obtain

{f.o}

2

a n1m2 - nzml
faxy, == 2
A 2 2 2
By my (0 + M35 + mp) 32
N2,My

Xsin{27a{(ny = ny)x+ (Mg — my)y]
+ Pnym, ~ ‘Pnzmz}- (3.9

We notice that for the particular modéB.3) and for the
particular choice of operatdr given by Eq.(3.6), the partial

control termf, is independent of time. Figure 2 depicts a

contour plot of it.
The computation of; is given by

fa(V) == 3{T'V. T3},

and substituting the expressiof&7) and (3.8 for I'V and
f,, one obtains

By, D=-—

24 ny,My,Ny, My
N3,M3

(ngmy = myny)[(Ng = Np)Mg = (Mg — My)Ng]
() g+ )+ )

Xsin2m(ny — Ny + Ng)X + 27r(my — M, + mg)y

(3.9

+ (‘Pnlm:L ~ ®n,m, + Pgmg ~ 2m7)].

A contour plot off; is depicted in Fig. 3. The computation of
the other terms of the serié8.8) can be done recursively by
using Eq.(2.9) (see also Refl20] and the Appendix

C. Properties of the control term

In this section, we first state that farsufficiently small,
the exact control term exists and is regular. The proofs of
these propositions are given in the Appendix. Then we give
estimates of the partial control terms in order to compare the
relative sizes of the different terms with respect to the per-
turbation.

Concerning the existence of the control term, we have the
following proposition:

Proposition 3 If the amplitudea of the potential is suffi-
ciently small, there exists a control teringiven by the series
(2.8) such thate+V+f is canonically conjugate t&, where
V is given by Eq.(3.3.

The proof is given in the Appendix. FON=25, it is
shown that the control term exists fars 7 x 1073, As usual,
such estimates are very conservative with respect to realistic
values ofa. In the numerical study, we consider valuesaof
of order 1.

Concerning the regularity of the control term, we notice
that each ternf in the serieq2.8) is a trigonometric poly-
nomial with an increasing degree wigh The resulting con-
trol term is not smooth but its Fourier coefficients exhibit the
same power law mode dependencé/as

Proposition 4 All the Fourier coefficientsf;sr)nk of the
functionsf of the serieq2.8) satisfy
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ascs modesN (N=25) in the potentiaV given by Eq.(3.3). The
(r12+—mz)3’2’ question we address in this remark is how the results are
modified as we increadd. First we notice that the potential
for (n,m) #(0,0). Consequently, for sufficiently small val- and its electric energy density are bounded witlsince
ues ofa, the Fourier coefficients of the control terfrgiven

[frmd <

i 1
by Eq. (2.8) satisfy VYD < a s S S
C. nme1 (N7 + M)
fomd < (r]2+—mz)3,/2’
2
a 1
for (n,m)# (0,0 and for some constar., > 0. IS an’%l (nTmz)z < oo,

In order to measure the relative magnitude between
Hamiltonian (3.3) and f; or f5, we have numerically com-  concerning the partial control tery, we see that it is in

puted their mean squared values: general unbounded witN. From its explicit form, one can
(2 see that it grows likeN In N (see the Appendix Less is

\ /—22 ~0.13, known about the control term since it is given by a series

V9 whose terms are defined by recursion. However, from the

proof of Proposition 3 in the Appendix, we see that the

(f3) ) value a of existence of the control term decreases like

m ~0.07, 1/(2N In N). This divergence of the control term comes

from the fact that the Fourier coefficients of the potential

where(f)=[gdt/5dx/3dyf(x,y,b). V are weakly decreasing with the amplitude of the wave

Another measure of the relative sizes of the control term&umber.
is given by the electric energy density associated with each Therefore, the exact control term might not exist if we
electric fieldV, f,, and f;. From the potential we get the increaseN keepinga constant. However we will see in Sec.
electric field and hence the motion of the particles. We definé/ B that for practical purposes the Fourier series of the con-

an average energy densifyas trol term can be truncated to its first ternithe Fourier
modes with highest amplitudeg-urthermore in the example
= i(|E|2>, we consider as well as for any realistic situation the value of
8w N is bounded by the resolution of the potential. In the case of

electrostatic turbulence in plasmigs ~ 1 determines an up-
per bound fok, wherek is the transverse wave vector related
to the indicesn, m, andp; the ion Larmor radius. The physics
corresponds to the averaging effect introduced by the Larmor

where E(x,y,t)==VV. In terms of the particles, it corre-
sponds to the mean value of the kinetic enefgd#y?) (up
to a multiplicative constantForV(x,y,t) given by Eq.(3.3),

2 N 1 rotation.
E=— > =5 (3.10 Remark on the control in the Bohm regime (parameter a
87 1 (N + ) larger than 1) Let us defineVy=V(t=0) and é6V=V-V,.
n2+m2<N? Since the Bohm regime is defined as a regime of relatively

slow evolution of the potentiglwith characteristic timer,)
compared to the motion of the particlesith characteristic
by time 7y), 7q<7,, one can introduce as small parameter

We define the contribution df, andf; to the energy density

1 ) ~ 74/ 7, and the integrable Hamiltoniaﬁo:H0+Vo, so that
62: _<|Vf2| >, (311) g =~ . IR _ . . .
8 H=Hg+eV with V=(V-Vy)/e. This approach is only valid
for a finite time of orderr,, after which one must redefing,
1 Ho, andV.
&= 5 (Vi3 (3.12
aw
For N=25, these contributions satisfy IV. NUMERICAL INVESTIGATION OF THE CONTROL
TERM
2 ~0 1a2 % ~0 38.4 . . . . .
e T g TR With the aid of numerical simulationsee Ref.[11] for

more details on the numericave check the effectiveness of

It means that the control ternfis andf; can be considered as the control theory developed in Sec. Ill by comparing the
small perturbative terms with respect Yowhena<1. We  dynamics of particles obtained from Hamiltonig®3) and
notice that even iff; has a smaller amplitude thai, its  from the same Hamiltonian with the control tefingiven by
associated average energy density is largemfof order 1 Eg.(3.8), and with a more refined control terfa+f4, where
(more precisely foa=0.598. f5 is given by Eq.(3.9). We use three types of indicators of

Remark on the number of modes inlW Sec. 1V, all the the dynamics: diffusion coefficient, Lyapunov indicators, and
computations have been performed for a fixed number oprobability distribution functionPDF) of step sizes.
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FIG. 4. Poincaré surface of section of a trajectory obtained for
Hamiltonian (3.3) using a generic initial condition assumirey
=0.8.

FIG. 6. Mean square displaceménf(t)) vs timet obtained for
Hamiltonian(3.3) with three different values cd=0.7,0.8,0.9.

A. Diffusion of test particles xi(0). In Fig. 6 is presented?(t)) for three different values

The effect of the control terms can first be seen from 2f & @=0.7,2=0.8, anda=0.9. For therange of param-

few randomly chosen trajectories. We have plotted Poincargterfc’ we C.OI’]S.IdeI’ the behavior @f(t)) is always found t9
sections(which are stroboscopic plots with period 1 of the P& linear in time fort large enough. The corresponding
trajectories ofV). In Figs. 4 and 5 is plotted the Poincaré diffusion coefficient is defined as

surfaces of section of two trajectories issued from generic (r3(t)

initial conditions computed without and with the control D=lim——.

term f,, respectively. Similar pictures are obtained for many e

other randomly chosen initial conditions. The stabilizing ef-The values oD as a function of with and without control
fect of the control tern(3.8) is illustrated by such trajecto- term are presented in Fig. 7. A significant decrease of the
ries. The motion remains diffusive but the extension of thegiffusion coefficient when the control terty is added can
phase space explored by the trajectory is reduced. be readily observed. As expected, the action of the control

In order to study the diffusion properties of the system,term gets weaker asis increased towards the strongly cha-
we have considered a set g particles(of order 1000  otic region.
uniformly distributed at random in the domainsX,y<1 at
t=0. We have computed the mean square displacement .
(r2(t)) as a function of time, B. Lyapunov indicator method
LM In order to get insight into the action of the control term to

2(4)) = — 1) — v (]2 the dynamics, we apply the Lyapunov indicator method. This
o) ME'X'(U X0, .1 method provides local information in phase space. It has
been introduced to detect ordered and chaotic trajectories in
wherex;(t)=(x(t),yi(t)) is the position of theéth particle at the set of initial conditions. It associates a finite-time
time t obtained by integrating Eq3.5) with initial condition  Lyapunov exponent with an initial conditionx,. By look-

12— . . , ,
1072
10}
8 L
] 107%
>
4t J Q
2} g % ] 107
0 L B
[
| — . s s s 5 . , , X
-4 -2 0 2 4 6 19,5 0.6 0.7 0.8 0.9 1
X a

FIG. 5. Poincaré surface of section of a trajectory obtained using FIG. 7. Diffusion coefficientD vs a obtained for Hamiltonian
a generic initial condition as in Fig. 1 and adding the control term(3.3) (open squargsand Hamiltonian(3.3) plus control term(3.8)
(3.8) to Hamiltonian(3.3) with a=0.8. (full circles).
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ing at the mapy— v(Xg), one distinguishes the set of initial 50
conditions leading to regular motion associated with a small
finite-time Lyapunov exponent. The pictures of this map 401

show the phase space structures where the motion is trapped
and does not diffuse throughout the phase space, e.g., they 30t
highlight islands of stability located around elliptic periodic
orbits. ” ool
Consider an autonomous floe=f(x). The Lyapunov in-
dicator method is based on the analysis of the tangent flow

10t
dy
— =Df(x)y, 4.2
at (x)y (4.2) 0
where Df is the matrix of variations of the flow. The ¢ 20 40 60 T 80 100 120 140
Lyapunov indicator is defined as the value
(%o, T) = Inlly(T, FIG. 8. Values of the Lyapunov indicatefx,, T) as a function

of time T for three trajectories obtained for Hamiltonig®3) with
at some finite timeT starting with some initial conditiom,  a=0.4 for the following initial conditions: one strongly chaoti®
and a generic vectoy,. This definition is very close to the Xo=(0.865,0.39, one weakly chaotigb) x,=(0.8766,0.39 and
one of a finite-time Lyapunov exponent. The plotiofersus ~ one quasiperiodicc) xo=(0.895,0.39.
Xg gives a map of the dynamics by highlighting regions of
stability and regions of chaotic dynamics. there is an overall linear increase of the Lyapunov indica-
For a chaotic trajectory, the value of the Lyapunov indi-tor, and one quasiperiodic motigitrapped around an el-
cator increases linearly with time, whereas for a regular tratiptic periodic orbiy. We notice that not only the method
jectory (periodic or quasiperiodjcit increases like Iri (see is able to discriminate early between regular and chaotic
rigorous results for nearly perturbed Hamiltonian systems irmotions but it is also able to detect weakly versus strongly
Ref.[22]). So in regular regions, this Lyapunov indicator is chaotic trajectories for rather small valuesTof
expected to be much lower than in chaotic regions. With the control termf, given by Eq.(3.8), the equations
Here the Hamiltonian flow is not autonomous. However,of motion can be rewritten as
by considering that is a new coordinate of the motigand

E is its conjugate momentuynwe obtain an autonomous x = RFe 2™ +f,(x),
flow with two degrees of freedom. We notice that the equa-
tions of motion for Hamiltonian(3.3) can be written as wheref,(x)=V+f,. The equation of evolution of becomes
v — —2i 7t i . :
x=ReF()e ], 4.3 y = REG(X)e 2™y + 2im[F(x)e 2™ + Df,(x)y.
where

With the control termf,(x)+f5(x,t), wherefs is given by
F(x) = V*V(x,0) +iVV(x,1/4), Eq. (3.9, the equations of motion can be written as

where V+=(-a/dy,d/ 9x) and V(x,t) is given by Eq.(3.3).
The nonautonomous flow4.3) can be mapped into an au-
tonomous flow by considering a third equatior1. The ol — -
computation of the tangent flowof dimension 3 follows where f5(x)=V-15(x,0)+IV=fs(x,1/4). The equation of
. 9 evolution ofy becomes
from the matrix of variations of the autonomous flow. We
have chosen the third component of the vegtdollowing
the evolution of the tangent flo4.2) equal to one, which
can be done without loss of generality since E4.2) is
linear iny. Therefore, it reduces to the evolution of a two-

x=Re(F +f3)e2™] +fy(x),

0.5}

dimensional vectoy which is given by 0.45}
y =R G(x)e 2™y + 2mim[F(x)e™2™], . i

0.4f 7,

whereG is the two-dimensional matri&(x)=DF (matrix of L

the variations of the vector field). Figure 8 shows the value

of v(xq,T) as a function off for T [0, 140 for three initial 0.35}

conditionsx,: one strongly chaotix,=(0.865,0.39, one

weakly chaoticx,=(0.8766,0.39 and one quasiperiodic 03

Xp=(0.895,0.39. The plots of the Poincaré sections of
these three trajectories up 16=1000 areshown in Fig. 9.
These figures show two chaotic trajectories for which  FIG. 9. Poincaré sections of the three trajectories of Fig. 8.
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FIG. 12. Poincaré sections of the trajectorieg@fHamiltonian
(3.3) and (b) Hamiltonian(3.3) with control termf, given by Eqg.
(3.8), with initial conditionsxy=(0.085,0.38%

tor at T=200 fora=0.4 with and without control term. The
first peak in the upper and lower panels corresponds to the

FIG. 10. Lyapunov indicator map(xo, T=200 for Hamiltonian regular component of the phase space. We clearly see that the

(3.3 for a=0.4. second peak corresponding to the chaotic component is dras-
_ A tically reduced with the addition of the partial control term.
y =Re(G +gx)e ™y + 2aim[(F +f;)e™™] + Dy, The effect of a more refined control term is observed in Fig.
14 fora=0.6 when the control terrfy, starts to fail to reduce
wheregs(x) =Df . significantly the chaotic part of phase space. We see that the

On a grid of 10000 initial conditionsoe[0,1]% we  proportion of the regular trajectories has increased with the
compute ¥(xq,T) for T=200. Figure 10 represents the addition off;. More quantitatively, 8% of the trajectories of
Lyapunov indicator map fom=0.4 without control term. the Hamiltonian without control have a Lyapunov indicator
Figure 11 shows for the same values of parameters, themaller than 7 aff=200. With the addition of,, this pro-
Lyapunov indicator map with the control terfa. The gen-  portion is increased to 25% whereas it is around 30% with
eral effect of the control terr, is a decrease of the magni- the addition off,.
tude of the Lyapunov indicators. However, the stabilization
effect of the control terni, is not uniform. There are regions . )
where the(partia) control termf, fails to stabilize the tra- C. Horizontal step sizes
jectories, e.g., in the region neap=(0.1,0.94. Figure 12 In order to investigate the effect of the control term on the
plots the Poincaré section of the trajectories startingoat transport properties and its relationship with single trajecto-
=(0.085,0.385 for Hamiltonian(3.3) with and without the  ries, we have computed the PDF of the step sizes. Let us
control termf, given by Eq.(3.8). We notice that this trajec- define thehorizontal step sizévertical step sizpas the dis-
tory is more chaotic and more diffusive with the control termtance covered by the test particle between two successive
than without. sign reversals of the horizonté@lertical) component of the

In order to see the global stabilization effect of the partialdrift velocity. The effect of the control is analyzed in terms
control termf,, we notice from the values plotted in Fig. 10 of the PDF of step sizes. Following test particle trajectories
that fora=0.4 about 25% of the trajectories have a Lyapunovfor a large number of initial conditions, with and without
indicator less than 5 af=200 without the control ternfi,,  control, leads to the PDFs plotted in Fig. 15 for Hamiltonian
compared with 70% with the control terfrom Fig. 11).  (3.3) without and with control term(3.8) for a=0.7. A
Figure 13 represents the histograms of the Lyapunov indicamarked reduction of the PDF is observed at large step sizes

400F
H
200}
0 10 20 30 40
1000
H+f2
5001
0 10 20 30 40
v
FIG. 11. Lyapunov indicator map(xq, T=200 for Hamiltonian FIG. 13. Histograms of the Lyapunov indicatorsTat 200 for
(3.3) for a=0.4 with the control ternf, given by Eq.(3.8). a=0.4 with and without control term computed in Figs. 10 and 11.
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FIG. 14. Histograms of the Lyapunov indicatorsTat 200 for
a=0.6 without control term(upper pangl with control termf,

FIG. 16. PDF of the horizontal step sizes of the trajectories with
(middle pane), and with control ternf,+f5 (lower pane).

small Lyapunov indicatoksmaller than 7, full squargsand with
large Lyapunov indicatoflarger than 7, open squajefor Hamil-
with control relatively to the uncontrolled case. Conversely,tonian(3.3) with a=0.4.

an increase is found for the smaller step sizes. The control

quenches the large steggypically larger than 0.5 fora the two first terms in the perturbation seriescigives a very
=0.7). Such a reduction of the probability to achieve a largeefficient control on the chaotic dynamics of the system.
radial step will modify the transport efficiency and, in par- In this section we show that it is possible to use an ap-
ticular, reduce the diffusion coefficient. proximate control or to make a small error while computing
In order to give support that the first peak of the histo-the control term and still get an efficient control of the dy-
gram of the Lyapunov indicataisee Fig. 13 is associated namics.
with the small step sizes, we have plotted in Fig. 16 the Below, we give numerical evidence for the following
distribution of horizontal step sizes of the trajectories with astatements: the reduction of the amplitude shows that one
small Lyapunov indicatogsmaller than ¥, and also the same can inject less energy to achieve a significant control. The
PDF for trajectories associated with large Lyapunov indicatruncation of the Fourier series indicates that one can sim-
tor (larger than 7. This result gives support to the fact that plify the control term and still get a significant control. The
the control term reduces the diffusion of trajectories by re-change of phases shows that one can introduce some error in

ducing chaos in the syste(hy the creation of invariant tori the phases and still get a significant control.
[23], see also the global picture in the conclugion

A. Reduction of the amplitude of the control term

V. ROBUSTNESS OF THE CONTROL We check the robustness of the control by increasing or

. . . reducing the amplitude of the contri#4]. We replacef, by
In the preceding section, we have seen that a truncation o and we vary the parametet away from its reference
the series defining the control term by considering the first or 2 y P y

10° . x10
h, 1 "
-1 _""
10 =0 _i'
.%3 Dﬂ 1.6 -------mmmmmmmmmmm oo A
2 ®  BogigaY? \"\ ."I
E 10 @@ooé‘%\ﬁﬂ 3 a S /
& o’ % AN
107 oot oF /
" .. & LN -
v ] ~ K
[ N O | N, 4
! v B \ - ~ 4
' &0 RN
. . \ R . s s
0 0.2 0.4 0.8 0.8 1 0 0.5 1.5
step size S

FIG. 15. PDF of the magnitude of the horizontal step size for FIG. 17. Diffusion coefficienD vs the magnitude of the control
Hamiltonian (3.3) with a=0.7 without the control termiopen  term(3.8) for a=0.7. The horizontal dashed line corresponds to the

squarey with the control ternt, (full circles), and with a truncated value ofD without control term. The dash-dotted line is a piecewise
control term with 12 modegpen circles linear interpolation.
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FIG. 18. Contour plot of the truncation d&(x,y) for a=0.7
containing the 12 Fourier modes of highest amplitude. 0

value 6=1. Figure 17 shows that both the increase and the
reduction of the magnitude of the control tertwhich is FIG. _19. Diffusion _coefficientD vs the number of Fourier
proportional to§a2) result in a loss of efficiency in reducing modesn in the truncation of the contrql terrfy for a=0.7. The .
the diffusion coefficient. The fact that a larger perturbationanhEd line corresponds to the case v_wthqut co_ntrol term, the solid
term—with respect to the computed one—does not work betl-'ne corresponds to the value_ of the diffusion with the full coqtrol
ter also means that the control is “smart” and that it is not 45" 12 and_tlr,'e dash-dotted line corresponds to a power law inter-
“brute force” effect. polation (<n™4).

The interesting result is that one can significantly reduce
the amplitude of the contrals< 1) and still get a reduction control term versus the number of Fourier modes kept in
of the chaotic diffusion. We notice that the average energyn€ truncation off,. The reduction of the diffusiorwith
densitye,(8) associated with a control terdf, is equal to  respect to the uncontrolled casalso holds for a very
e,(8)=&%,, wheree, is given by Eq.(3.11). Therefore, for S|mp]|f|ed control term containing only the few highest
5=0.5, where the energy necessary for the control is onelOurier modes of the full control term. If we replaéeby
fourth of the optimal control, the diffusion coefficient is sig- the truncation W'th 12 mod_es we see th_at_ the effect is .St'”
nificantly smaller than in the uncontrolled casearly factor a strong reduction of the diffusion coefficient, a reduction

3). of about 25%. The energy densieyz) (see Sec. Il ¢ of
this truncated control term with respect to the energy den-
sity £ is

B. Truncation of the Fourier series of the control term

. . (12)
We show that a reduction of the number of Fourier modes &
£

of f, can still significantly reduce chaotic diffusion. The Fou-
rier expansion of the control teriiy given by Eq.(3.8) is

= 0.00%?, (5.3

where€ is given by Eq.(3.10, which is less than 1% of the
f,= >, fl2limnemy (5.1)  energy associated to the electric potential. It is interesting to
nm note that the energy density of this truncation with respect to
@ the one of the full control ternf, is
wheref ' is 2
@ _ a_2 (nml - nlm)ei(“’nlmf"’nrn,mfm) eze_ =0.09, (54)
"M 81 o, (N2 + M3 (ny = )2+ (my — M) o ? o
wheree, is given by Eq.(3.11), which is less than 10% of
(5.2 the energy associated with the full control tefg More-
The truncation of the Fourier series is made by considerin@ver, we see from Fig. 15, where the PDF of horizontal
the Fourier modes with an amplitude greater than or equal t§tep sizes is plotted, that the effect of this coarse grained
€, that is, the sum in EG5.2) is restricted to the set of modes control term f, reduced to 12 modes is also to quench
(n,m) such thatjfﬂze. For example, if we consider=9  large step sizes. .
%1074 there are 12 modes in the sum, which are the More generally, these results show that a partial knowl-
modes with wave vecto(0,1), (0,2), (1,-1), (1,-2), e.d.ge of the pqtentigl, e.g. ona glicbarse grained _is suf-
(1,0), (2,0) and the opposite wave vectot$, is real, ficient to obtain a significant control of the dynamics.
compared with the total number of modes of the ffjl _
which is about2000. Figure 18 shows the contour plot of C. Change of phases if,
f, obtained with only these 12 modes. Figure 19 shows the We check the robustness of the control with respect to an
diffusion coefficient for the dynamics of the truncated error introduced in the phases of the control term given by
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04t PEos | FIG. 21. Global picture of the control: The bold curved segment
) —6‘9/0 of curve represents a set of integrable Hamiltonians aréiynd’he
0. 2w gray circles are the domains of existence of a given invariant torus
0 ) , . ) X around an integrable Hamiltonian. The gray arrows represent two
0 0.02 0.04 0.06 0.08 0.1 0.12 ways of controlling the Hamiltoniakly+¢V: the first one of ordeg
Y and the second one of orde#. The arrows fronH, to H. and from

H{ to Hy+e'V represent close to identity canonical transformations.
FIG. 20. Diffusion coefficientD vs the phase erroy in the

expression3.8) of f, for a=0.7. The dashed line corresponds to the .
case without control term, the solid line corresponds to the casélamiltonian H, which is not integrable but—being suffi-
with the full control term, and the dash-dotted line corresponds to iently close toH.—generates a more regular dynamics
quadratic interpolation. (presence of invariant toriwith respect toHy+£V. For in-
stance, we have shown that one can successfully use a trun-
Eq.(3.8), i.e., we change the phases, by ¢nmin Eq.(3.8) cated control term of ordeg? and that one is allowed to
by tailor it to some specific requirements on its shape, on the
energy necessary to achieve control, and also according to a
Pam= €nm* YPnm (5.5 partial knowledge ol (e.g., a truncation of the Fourier se-
. P . ries and an error on the phases
where ¢y are uniformly random distributed phases ‘in The invariant tori that have been created by adding the

[0,27], y is the amplitude of the error, and,, are the > .
correct phases. Figure 20 shows the diffusion coefficient Vergontrol termf of ordere” are those which were broken by

sus the phase errop for a fixed value ofa(a=0.7). We increasing the amplitude of the perturbation, meaning that
notice that the chaotic diffusion is still si nifié:a.ntl re- these tori are those of a Hamiltoniafy+ 'V, wheres’ <&
duced by the control with a small error on tghe phaseys Théup to some smooth canonical transform close to the identity
diffusion coefficient is still strongly reduced by a factor ran;forn). In order.to |Ilustrgte this statement, we have plot-
greater than 2 for a phase error of 5%. For small values o d in gray two regions of existence of a given invariant torus

the diffusion coefficient versug is well fitted by a specified, e.g., by its frequencyrhe uncontrolied Hamil-
Z]luadratic interpolation, that i€)(y)=Dg+D; 72 tonianHy+eV does not have this invariant torus whereas the
’ — Y0 17 -

controlled oneH.=Hy+&V+&f does. The controlled Hamil-
tonian H; is 2conjugate to the controlled Hamiltonidd,
=Hg+e&'V+e'“f for ¢’ <e (since they are both conjugate to
VI- CONCLUSIONS Hp). SinceHy+¢'V is inside the ball around the integrable
We have provided an effective strategy to control the chaHamiltonian H, the invariant torus oHy+&'V of the se-
otic diffusion in Hamiltonian dynamics using small perturba- lected frequency is a small deformation of the torus of the
tions. Since the formula of the control term is explicit, we arecontrolled HamiltoniarH, and hence a small deformation of
able to compare the dynamics without and with control. Thethe torus of the controlled HamiltoniaH.. Therefore the
idea of the control is pictorially represented in Fig. 21: A invariant tori of H, obtained by means-of control are small
HamiltonianHy+¢V is controlled by adding a control terfn deformations of the tori oHy+eV which were broken by
The naive choice for a control term would be—¢V but this  increasinge.
would be useless since it is of the same magnitude of the We have applied this general technique of control to a
source of chaotic transport and thus would require a majospecific model, describing anomalous electric transport in
modification of the physical condition of the system of inter- magnetized plasmas. In particular, we have shown that the
est. In this paper, we have presented a way to design acontrol term is robust, meaning that one is able to simplify it,
integrable controlled Hamiltoniakl, with a small control  to reduce its amplitude or to make a small error without
term f of ordere?. This controlled Hamiltonian is conjugate changing its overall action of reducing chaotic transport.
to Hy (we assume for simplicity tha®VV=0). This construc- Even though we use a rather simplified model to describe
tion of the controlled Hamiltonian works well up to some chaotic transport of charged particles in fusion plasmas, our
valuee;. Moreover, we have shown that the control is robustresult makes us believe that through some small smart modi-
in the sense that one can use an approximate controllefitation of the electric potential a relevant reduction of the

err
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turbulent losses of energy and particles in tokamaks could be

attained, for the moment at least in principle.
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APPENDIX: PROOF OF PROPOSITIONS 3 AND 4
1. Proof of Proposition 3
The terms of the serig®.8) can be written in the follow-
ing form:

fo= > fS sin2m(nx+my) + ¢, -

n,mk

27kt],

where the sum ovétis from —sto s, and the two sums over
n and m are from -sN to sN. From the recursion formula
(2.9, we have

N /
9 _a mn’ —nm’ (s-1)
fn "mk’ T 2_5 El (n2+ m2)3/2 ( f '-n,m'-mk’-1
n,m=
+ fns_nl)m—m’ k'+1/ " (Al)
We use the following norm:
It = supifio,
n,mk
From Eq.(Al), we get
au | < mo=nm|
f 5 ———an-
Ifdl < S mpn%_l (nZ + m?)32
Since,|mn’ —nm'| <sN(m+n), we have
I < an|fs-all,
where
A=2N A2

It follows that
[fdl < (an)s*a27%2,

since||f,||=a27%2. Therefore, the serie€.8) converges for
a<l1l/\. We notice that foN=25, A\=135, i.e., the series
converges fom<7x 1073,

Since n—m/(n>+m?)%? is a positive and decreasing
function, we have

PHYSICAL REVIEW E 69, 056213(2004)

N N

D m _ f mdn  _ J“ mdn
= (n2+ m2)3/2 = 0 (n2+ r.nZ)3/2 = o (n2+ m2)3/2'

By rescaling the integralt=n/m) and using the fact that
[ dt/(t2+1)%2=1, we have

N1
A<2ND SS2NINN+ 2N+,

m=1

(A3)

where v is the Euler-Mascheroni constant. In particular, we

notice that the bound ok increases likeN In N.

2. Proof of Proposition 4

Concerning the regularity of the functiorig and f, we
would like to show that

a’Cs
= —55.
(n2+ m2)3/2

We notice that Eq(A4) is satisfied forf;=V given by Eq.
(3.3 for C=1. The inequality(Al) gives

I8 (A4)

-1
(9 1258
| n’m’k’| =4
N
S |[mn’ = nn |
el (nZ + m2)3/2[(n/ _ I’])2 + (mr _ m)2]3/2'

We can always assume that bothandm’ are positive since
we have|n’—n|=||n’|-n| which gives

£S5 | = Nacst
N m+n
>< ’
n,mzzl (n2+ m2)3/2[(|nr| _ n)2 + (|m/| _ m)2]3/2

where we have used the inequalitgn’ —nm'| < sN(m+n).
We have to distinguish the following cas€g:n’ >N and
m’ >N, (i) <N andm’ >N, and(iii) <N andm’<N.
We notice that by symmetry the casé>N andm’'<N is
similar to (ii).
Forn’,m >N, we haven’<(N+1)(n’-n) andm’'<(N
+1)(m’—=m). Thus we have

1
(N —=n)?+(m -m)?

(N+1)2
n12 + m/2

which leads to

SCs—l(N + l) 3)\

(s S
|\ (n72+m/2)3/2 !

n'm’k’

If.

where\ is given by Eq.(A2).
Forn’<N andm’ >N, we havem’ <(N+1)(m'—m). By
using the estimatén’ —n)?+(m’ -m)?=(m’' —m)?, we have
1

_(N+17
(N =m?+(m' -m? -

m/2 ’

and sincen’=m’,
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(N+1)? _ 2N+ 1)?

m12 = n12+m/2'
Thus we have
ss—193/2, 3
n'mk’'l (n/2+m/2)3/2

Forn’<N andm’ <N, we use the crude estimates

1 <
(N —n)2+(m -m?

and

PHYSICAL REVIEW E 69, 056213(2004)

2N?
< —.
n/2 + m12
Thus we have
aSCS—123/2N3)\
(n/2 + m12)3/2 .
By denotingC=2%%(N+1)3\, Eq. (A4) is satisfied for alln,

m and for alls.
It follows that fora<<1/C, the same inequality holds for

|f(5)

n’m’k'| =

f:

<fnmk> = (nz_'_—:]z)g/z,

whereC,.=a2C?/(1-aC).
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