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It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations
whose form can be explicitly computed. In particular, it is possible to control(reduce) the chaotic diffusion in
the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged
test particles in a turbulent electric field across the confining magnetic field in controlled thermonuclear fusion
devices. Though still far from practical applications, this result suggests that some strategy to control turbulent
transport in magnetized plasmas, in particular, tokamaks, is conceivable. The robustness of the control is
investigated in terms of a departure from the optimum magnitude, of a varying cutoff at large wave vectors,
and of random errors on the phases of the modes. In all three cases, there is a significant region of maximum
efficiency in the vicinity of the optimum control term.
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I. INTRODUCTION

Transport induced by chaotic motion is now a standard
framework to analyze the properties of numerous systems.
Since chaos can be harmful in several contexts, during the
last decade or so, much attention has been paid to the so-
called topic ofchaos control. Here the meaning ofcontrol is
that one aims at reducing or suppressing chaos inducing a
relevant change in the transport properties, by means of a
small perturbation(either open-loop or closed-loop control
of dissipative systems[1,2]) so that the original structure of
the system under investigation is substantially kept unal-
tered. Control ofchaotic transportproperties still remains an
open issue with considerable applications.

In the case of dissipative systems, an efficient strategy of
control works by stabilizing unstable periodic orbits, where
the dynamics is eventually attracted. Similarly, a first idea to
control Hamiltonian systems is to modify the parameters of

the system in order to act on periodic orbits: One can en-
hance the stability of elliptic periodic orbits by zeroing their
residues[3] or by stabilizing hyperbolic periodic orbits[4].

Another idea to stabilize the system is to enlarge the
phase space by coupling the system with an external system
(and hence with additional degrees of freedom which makes
the large system more regular) [5]. These embedding tech-
niques are similar to the above methods on the stabilization
of unstable periodic orbits; they are based on the construc-
tion of a dissipative system from the original Hamiltonian
system. The techniques developed for dissipative systems
can thus be applied to this modified system, such as, for
instance, the targeting of periodic orbits.

A different approach is to modify the Hamiltonian(or just
the potential) to control the original system. This approach is
useful when one is able to act on this system with an external
force. The interesting point is that the Hamiltonian structure
with its number of degrees of freedom is preserved. So far,
the modifications of the Hamiltonian that have been pro-
posed in the literature are the following: the modification of
the integrable part of the Hamiltonian[6], the control of a
system with large and nonsmooth external pulses[7], a lo-
calized control with a modification in some specific regions
of phase space[8], or a control using variations of the exter-
nal field [9,10]. However, we notice that most of the modi-
fications of the potential that have been proposed so far are
tailored to specific examples(with the exception of the opti-
mal control [9]) and the required modifications are large
compared with the potential.
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Hamiltonian description of the microscopic origin of par-
ticle transport usually involves a large number of particles.
Methods based on targeting and locking to islands of regular
motions in a “chaotic sea” are of no practical use for con-
trolling when dealing simultaneously with a large number of
unknown trajectories. Therefore, the most efficient procedure
appears to be to control the transport process with a small
perturbation, if any, making the system integrable or closer
to integrable. In what follows we show that it is actually
possible to control Hamiltonian chaos in this way by preserv-
ing the Hamiltonian structure. We describe a general method
for controlling nearly integrable Hamiltonian systems, and
we apply this technique to a model relevant to magnetized
plasmas.

Chaotic transport of particles advected by a turbulent
electric field with a strong magnetic field is associated with
Hamiltonian dynamical systems under the approximation of
the guiding center motion due toE3B drift velocity. For an
appropriate choice of the turbulent electric field, it has been
shown that the resulting diffusive transport is then found to
agree with the experimental counterpart[11]. It is clear that
such an analysis is only a first step in the investigation and
understanding of turbulent plasma transport. The control of
transport in magnetically confined plasmas is of major im-
portance in the long way to achieve controlled thermonuclear
fusion. Two major mechanisms have been proposed for such
a turbulent transport: transport governed by the fluctuations
of the magnetic field and transport governed by fluctuations
of the electric field. There is presently a general consensus to
consider, at low plasma pressure, that the latter mechanism
agrees with experimental evidence[12]. In the area of trans-
port of trace impurities, i.e., that are sufficiently diluted so as
not to modify the electric field pattern, theE3B drift motion
of test particle should be the exact transport model. Even for
this very restricted case, control of chaotic transport would
be very relevant for the thermonuclear fusion program. The
possibility of reducing and even suppressing chaos combined
with the empirically found states of improved confinement in
tokamaks suggest to investigate the possibility to devise a
strategy of control of chaotic transport through some smart
perturbations acting at the microscopic level of charged par-
ticle motions.

As in the current literature the electric turbulent transport
in plasmas is mainly addressed in the Eulerian(fluid) frame-
work, let us first recall the difference between Lagrangian
and Eulerian descriptions of transport. We consider the ad-
vection of a scalar quantityusx ,td describing, e.g., the con-
centration of a passively transported entity. In a given Eule-
rian velocity fieldvsx ,td the transport ofusx ,td is described
by

] usx,td
] t

+ vsx,td · = usx,td = D¹2usx,td, s1.1d

whereD is a molecular diffusion coefficient. This equation
holds for both neutral fluids and plasmas. If the fieldvsx ,td
is given independently from the fieldusx ,td, Eq. s1.1d is
linear in vsx ,td. The complexity of the fieldusx ,td will then
depend on both the complexity of the fieldvsx ,td and on the

molecular diffusion coefficientD. When considering the
simulation of Eq.s1.1d, the magnitude ofD will govern the
mesh size to store the fieldusx ,td. For a vanishingly small
diffusion D, there will be no cutoff of the small scales gen-
erated by the simulation. This will require an infinite storage
capability to describe the complexity ofusx ,td that can ap-
pear even for a relatively smooth velocity field. To evaluate
this property, the most straightforward description is given
by a Lagrangian approach. For the same transport process,
the latter requires to solve the following equations of motion
of a passive tracerse.g., particle, fluid dropd whose Eulerian
concentration function isusx ,td,

ẋ = vsx,td, s1.2d

which in the case of a two-dimensional incompressible Euler
flow can be given by the form

ẋ =
d

dt
Sx

y
D = vsx,td = ='c = S− ]ycsx,y,td

]xcsx,y,td
D , s1.3d

where c denotes the stream function of the Eulerian field
vsx ,td, the trajectory of the tracer is denoted byxstd, and
=';s−]y,]xd. What is remarkable here is the Hamiltonian
structure of the equations of motions1.3d, where the stream
function c plays the role of the Hamiltonian function andx
and y play the role of the canonically conjugate variables.
With the exception of trivial velocity fieldsv ssuch as a
uniform, parallel flowd these equations of motion are in gen-
eral nonlinear in the coordinates; in fact, if we even think of
a simple vortex, we realize thatvx and vy must contain at
least one trigonometric function. Now, also without a stan-
dard squadraticd kinetic energy term, this kind of Hamil-
tonian dynamical system displays all the rich and complex
phenomenology of the transition between regular and chaotic
motions and between weak and strong chaosf13g. Thus,
even in the presence of rather regular Eulerian velocity pat-
terns, the solutions of Eqs.s1.2d ands1.3d can be very com-
plicated, with apparently no relation left withvsx ,td. In other
words, chaotic Lagrangian diffusion can take place also in
the presence of rather simple Eulerian velocity patterns. For
realistic simulation of Eq.s1.1d a finite mesh size must be
introduced and accordingly the diffusion coefficientD must
reach a finite value to smear out the small scales that cannot
be captured by the grid. If the velocity field is characterized
by a large regular structure superimposed to small scale
structures, the output of the simulation can lead to the ab-
sence of any diffusion but the molecular onef14g. The dif-
ficulty in the simulation of Eq.s1.1d will then lead to an
apparent conflict with a broad experimental evidencef15g.
The most efficient means to address the transport of passive
scalars in a given velocity fieldvsx ,td appears to follow a
Lagrangian approach that allows one to describe the motion
at all scales in space and time. The cost of this method will
appear in the statistics that must be performed to obtain a
general property of the system whenever a single trajectory
does not allow one to capture the properties of all possible
trajectories.
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When addressing plasma transport, Eulerian and Lagrang-
ian approaches are combined to provide an analysis of the
transport properties. An equation similar to Eq.(1.1) is
coupled to a vorticity equation defining the fieldvsx ,td [16].
The Eulerian description is used to generate the velocity field
and a Lagrangian approach is used to follow trace impurities
and trace tritium that allows one to compare the simulations
to experimental data[17].

A close analogy exists between the equations of motion of
passive tracers(1.3) and those of the guiding centers of
charged particles moving in strongly magnetized plasmas
and in the presence either of an electric field transverse to the
magnetic field or of an inhomogeneous component of the
magnetic field itself. The electrostatic case[18] is modeled
by

ẋ =
d

dt
Sx

y
D =

c

B2Esx,td 3 B =
c

B
S− ]yVsx,y,td

]xVsx,y,td
D ,

whereV is the electric potential,E=−=V, andB=Bez. The
magnetic case is modeled by

ẋ =
d

dt
Sx

y
D =

vi

RB
3 = Fpolsx,td=

vi

RB
S− ]yFpolsx,y,td

]xFpolsx,y,td
D ,

s1.4d

where vi is the velocity along the field line,R the major
radius of the torus, andFpol the poloidal magnetic flux
divided by 2p. In both cases, the physically remarkable
phenomenon—in complete analogy with the Lagrangian
diffusion of passive scalars—is that even in the presence
of rather regular space-time patterns of the electric fields
or of the magnetic inhomogeneities, the charged particles
can diffuse across the magnetic field which ceases to be
confining. The dynamical instability with respect to small
variations of the initial conditions, known as deterministic
chaos, is the very source of the enhanced cross-field dif-
fusion; it is “intrinsically” noncollisional and it turns out
to be orders of magnitude larger than the collisional one
f11g, sometimes even many orders of magnitude larger
f19g.

In this paper, the problem we address is how to control
chaotic diffusion in such Hamiltonian models. In some range
of parameters, the problems can be considered as nearly in-
tegrable. We consider the class of Hamiltonian systems
which can be written in the formH=H0+eV that is an inte-
grable HamiltonianH0 (with action-angle variables) plus a
small perturbationeV.

The problem of control in Hamiltonian systems is the fol-
lowing one: For the perturbed HamiltonianH0+eV, the aim
is to devise a control termf such that the dynamics of the
controlled HamiltonianH0+eV+ f has more regular trajecto-
ries (e.g., on invariant tori) or less diffusion than the uncon-
trolled one. Obviouslyf =−eV is a solution since the result-
ing Hamiltonian is integrable. However, it is a useless
solution since the control is of the same magnitude as of the
perturbation. For practical purposes, the desired control term
should be small(with respect to the perturbationeV), local-
ized in phase space(meaning that the subset of phase space

where f is nonzero is finite or small enough), or f should be
of a specific shape(e.g., a sum of given Fourier modes or
with a certain regularity). Moreover, the control should be as
simple as possible in view of future implementations in ex-
periments.

In Sec. II, we explain the control theory of nearly inte-
grable Hamiltonian systems following Ref.[20]. We show
that it is possible to construct and compute analytically a
control term f of order e2 such that the controlled Hamil-
tonianHc=H0+eV+ f is integrable. In Sec. III, after defining
the model of interest to our study in Sec. III A, we compute
analytically the first terms of the expansion of the control
term in Sec. III B. Some properties of the control term are
given in Sec. III C. A numerical study of the effect of the
control term on the dynamics is done extensively in Sec. IV.
It is shown that the chosen control term is able to drastically
reduce the chaotic transport. In Sec. V, we study the effect of
some truncations that aim at either simplifying the control
term or reducing the energy input to control the system: In
particular, we show that reducing the control term to its main
Fourier components or reducing the magnitude of the control
term is sufficient to govern a significant decrease of the cha-
otic transport. Though, of course the optimal control is ob-
tained with the full control term. These results indicate that
this control of Hamiltonian systems is robust.

II. CONTROL THEORY OF HAMILTONIAN SYSTEMS

In this section, following the framework of Ref.[20] we
explain the control theory of Hamiltonian systems. LetA be
the vector space ofC` real functions defined on the phase
space. ForHPA, let hHj be the linear operator acting onA
such that

hHjH8 = hH,H8j,

for anyH8PA, whereh· , ·j is the Poisson bracket. HenceA
is a Lie algebra. The time evolution of a functionVPA
following the flow of H is given by

dV

dt
= hHjV,

which is formally solved as

Vstd = ethHjVs0d,

if H is time independent, and where

ethHj = o
n=0

`
tn

n!
hHjn.

Any elementVPA such thathHjV=0 is constant under the
flow of H, i.e.,

∀t P R, ethHjV = V.

Let us now consider a given HamiltonianH0PA. The op-
eratorhH0j is not invertible since a derivation has always a
nontrivial kernel. For instance,hH0jH0

a=0 for any a such
that H0

aPA. The vector space KerhH0j is the set of con-
stants of motion. Hence we consider a pseudoinverse of
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hH0j. We define a linear operatorG on A such that

hH0j2G = hH0j, s2.1d

i.e.,

∀V P A, ˆH0,hH0,GVj‰ = hH0,Vj.

The operatorG is not unique. Any other choice ofG8 satis-
fies that the range RgsG8−Gd is included into the kernel
KershH0j2d.

We define thenonresonantoperatorN and theresonant
operatorR as

N = hH0jG,

R = 1 −N,

where the operator 1 is the identity in the algebra of linear
operators acting onA. We notice that Eq.s2.1d becomes

hH0jR = 0,

which means that the range RgR of the operatorR is
included in KerhH0j. A consequence is thatRV is constant
under the flow ofH0, i.e., ethH0jRV=RV. We notice that
when hH0j and G commute,R and N are projectors, i.e.,
R2=R and N2=N. Moreover, in this case we have
Rg R=KerhH0j, i.e., the constant of motion are the ele-
mentsRV whereVPA.

Let us now assume thatH0 is integrable with action-angle
variablessA ,wdPB3Tl whereB is an open set ofRl and
Tl is the l-dimensional torus. ThusH0=H0sAd and the Pois-
son brackethH ,H8j between two elementsH andH8 of A is

hH,H8j =
] H

] A
·
] H8

] w
−

] H

] w
·
] H8

] A
.

The operatorhH0j acts onV expanded as follows:

V = o
kPZl

VksAdeik·w,

as

hH0jVsA,wd = o
k

ivsAd ·k VksAdeik·w,

where

vsAd =
] H0

] A
.

A possible choice ofG is

GVsA,wd = o
kPZl

vsAd·kÞ0

VksAd
ivsAd ·k

eik·w. s2.2d

We notice that this choice ofG commutes withhH0j.
For a givenVPA, RV is the resonant part ofV andNV

is the nonresonant part:

RV = o
k

VksAdx„vsAd ·k = 0…eik·w, s2.3d

NV = o
k

VksAdx„vsAd ·k Þ 0…eik·w, s2.4d

wherexsa=0d vanishes whenaÞ0 and it is equal to 1 when
a=0.

From these operators defined for the integrable partH0,
we construct a control term for the perturbed Hamiltonian
H0+V where VPA, i.e., f is constructed such thatH0+V
+ f is canonically conjugate toH0+RV.

Proposition 1. For VPA andG constructed fromH0, we
have the following equation:

ehGVjsH0 + V + fd = H0 + RV, s2.5d

where

fsVd = e−hGVjRV +
1 − e−hGVj

hGVj
NV − V. s2.6d

We notice that the operators1−e−hGVjd / hGVj is well defined
by the expansion

1 − e−hGVj

hGVj
= o

n=0

`
s− 1dn

sn + 1d!
hGVjn.

Proof. SinceehGVj is invertible, Eq.(2.5) gives

fsVd = se−hGVj − 1dH0 + e−hGVjRV − V.

We notice that the operatore−hGVj−1 can be divided byhGVj,

fsVd =
e−hGVj − 1

hGVj
hGVjH0 + e−hGVjRV − V.

By using the relations

hGVjH0 = hGV,H0j = − hH0jGV

and

hH0jG = N,

we have

fsVd = e−hGVjRV +
1 − e−hGVj

hGVj
NV − V . h

The control term can be expanded in power series as

fsVd = o
n=1

`
s− 1dn

sn + 1d!
hGVjnsn R + 1dV. s2.7d

We notice that ifV is of ordere, fsVd is of ordere2.
Proposition 1 tells that the addition of a well chosen con-

trol term f makes the Hamiltonian canonically conjugate to
H0+RV. It is also possible to show from Proposition 1 that
the flow ofH0+V+ f is conjugate to the flow ofH0+RV (see
Ref. [20]).

Proposition 2.
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∀t P R, ethH0+V+fj = e−hGVj ethH0j ethRVj ehGVj.

The remarkable fact is that the flow ofRV commutes with
the one ofH0, sincehH0jR=0. This allows the splitting of
the flow of H0+RV into a product.

The notion of nonresonant Hamiltonian is defined by the
following statement.

Definition. H0 is nonresonant if and only if∀A
PB ,vsAd ·k =0 impliesk =0.

If H0 is nonresonant then with the addition of a control
term f, the HamiltonianH0+V+ f is canonically conjugate to
the integrable HamiltonianH0+RV sinceRV is only a func-
tion of the actions[see Eq.(2.3)].

If H0 is resonant andRV=0, the controlled Hamiltonian
H=H0+V+ f is conjugate toH0.

In the caseRV=0, the series(2.7), which gives the ex-
pansion of the control termf, can be written as

fsVd = o
s=2

`

fs, s2.8d

where fs is of orderes and given by the recursion formula

fs = −
1

s
hGV, fs−1j, s2.9d

where f1=V.
Remark. A different approach of control has been devel-

oped by Gallavotti in Ref.[6]. The idea is to find a control
term (namedcounter term) depending only on the actions,
i.e., to findN such that

HsA,wd = H0sAd + VsA,wd − NsAd

is integrable. For isochronous systems, that is,

H0sAd = v ·A ,

or any functionhsv ·Ad, it is shown that if the frequency
vector satisfies a Diophantine condition and if the perturba-
tion is sufficiently small and smooth, such a control term
exists. An algorithm to compute it by recursion is provided
by the proof. We notice that the resulting control termN is of
the same order as the perturbation, and has the following
expansion:

NsAd = RV + 1
2RhGVjV + Os«3d,

where we have seen from Eq.s2.3d that RV is only a func-
tion of the actions in the nonresonant case. The assumption
that v is nonresonant is a crucial hypothesis in Gallavotti’s
renormalization approach. Otherwise, a counterterm which
only depends on the actionsA cannot be found.

Our approach makes possible the construction of a control
term in the resonant case. The controlled Hamiltonian is con-
jugate toH0+RV, whereRV depends on the angle and ac-
tion variables in the resonant case. Therefore the controlled
Hamiltonian is not integrable in general. The new termRV
which is always a conserved quantity is functionally inde-
pendent ofH0 since it depends on the angles. There exists a
linear canonical transformationsA8 ,w8d=stTA ,T−1wd, where
T is a l 3 l matrix with integer coefficients and determinant 1

such thatv is mapped onto a new frequency vector which
has itsr last components equal to zero, wherer denotes the
dimension ofhk PZl such that v ·k =0j. In these new
coordinatesRV depends only onr angles. This form ofH0
+RV is called theresonant normal form. The nonresonant
case occurs whenr =0. Whenr =1 the normal form ofH0
+RV depends only on one angle, so it is integrable.

In what follows, we will apply the control theory to a
resonant Hamiltonian which models theE3B drift in mag-
netized plasmas.

III. CONTROL OF CHAOS IN A MODEL FOR E ÃB
DRIFT IN MAGNETIZED PLASMAS

A. The model

In the guiding center approximation, the equations of mo-
tion of a charged particle in the presence of a strong toroidal
magnetic field and of a time dependent electric field are[18]

ẋ =
d

dt
Sx

y
D =

c

B2Esx,td 3 B =
c

B
S− ]yVsx,y,td

]xVsx,y,td
D , s3.1d

whereV is the electric potential,E=−=V, andB=Bez. The
spatial coordinatesx andy, wheresx,ydPR2 play the role of
the canonically conjugate variables and the electric potential
Vsx,y,td is the Hamiltonian of the problem. To define a
model we choose

Vsx,td = o
kPZ2

VksinF2p

L
k ·x + wk − vskdtG , s3.2d

wherewk are random phasessuniformly distributedd andVk
decrease as a given function ofuk u, in agreement with experi-
mental dataf21g. In principle one should use forvskd the
dispersion relation for electrostatic drift wavesswhich are
thought to be responsible for the observed turbulenced with a
frequency broadening for eachk in order to model the ex-
perimentally observed spectrumSsk ,vd. In order to use a
simplified model we use in this papervskd=v0 constant as a
dispersion relation. The phaseswk are chosen at random in
order to mimic a turbulent field with the reasonable hope that
the properties of the realization thus obtained are not signifi-
cantly different from their average. In addition we take for
uVku a power law inuk u to reproduce the spatial spectral char-
acteristics of the experimentalSskd, see Ref.f21g. Thus we
consider the following explicit form of the electric potential:

Vsx,y,td =
a

2p
o

m,n=1

n2+m2øN2

N
1

sn2 + m2d3/2

3sinF2p

L
snx+ myd + wnm− v0tG . s3.3d

By rescaling space and time, we can always assume thatL
=1 andv0=2p. In what follows, we chooseN=25. Figure 1
shows a visualization of the potential fort=0 and a=1.
Since the model is fluctuating in time, the eddies of Fig. 1
are rapidly modified in time and where a vortex was ini-
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tially present, an open line appears, and so on.
Two particular properties of the model, anisotropy and

propagation, have been observed: each image of the potential
field shows an elongated structure of the eddies and super-
posing images obtained at different times a slight propaga-
tion in they=x direction is found. However, this propagation
can easily be proved not to disturb the diffusive motion of
the guiding centers. The property of propagation can be eas-
ily understood analytically. In fact, restricting ourselves to
the most simplified case of an electric potential given only
by a dominant modesn=m=1d it is immediately evident that
at any given time the maxima and minima of the sine are
located on the linesy=−x+const. As the amplitudes are de-
creasing functions ofn and m, this structure is essentially
preserved also in the case of many waves. The property of
anisotropy is an effect of the random phases in producing
eddies that are irregular in space.

We notice that there are two typical time scales in the
equations of motion: the drift characteristic timetd, inversely
proportional to the parametera, and the period of oscillation
tv of all the waves that enter the potential. The competition
between these two time scales determines what kind of dif-
fusive behavior is observed[11]. In what follows we con-
sider the case of weak or intermediate chaotic dynamics(co-
existence of ordered and chaotic trajectories) which
corresponds to the quasilinear diffusion regime(see Sec.
IV A ), whereas in the case of fully developed chaos that
corresponds to the so-called Bohm diffusion regime one has
to introduce a slightly more complicated approach(see re-
mark at the end of Sec. III C).

B. Computation of the control term

We extend the phase spacesx,yd into sx,y,E,td where the
new dynamical variablet evolves aststd= t+ts0d andE is its
canonical conjugate. The autonomous Hamiltonian of the
model is

Hsx,y,E,td = E + Vsx,y,td. s3.4d

The equations of motion are

ẋ = −
] H

] y
= −

] V

] y
, ẏ =

] H

] x
=

] V

] x
, ṫ = 1, s3.5d

andE is given by takingH as constant along the trajectories.
We absorb the constantc/B of Eq. s3.1d in the amplitudea
of Eq. s3.3d, so that we can assume thata is small whenB is
large. Thus, for small values ofa, Hamiltonians3.4d is in the
form H=H0+eV, which is an integrable HamiltonianH0
swith action-angle variablesd plus a small perturbationeV. In
our caseH0=E, i.e., independent ofx,y, and t, so thatA
=sE,xd andw=st ,yd are action-angle coordinates forH0 sy
can be considered as an angle but it is frozen by the flow of
H0d. We could have exchanged the role ofx andy. We have

vsAd = S ] H0

] E
,
] H0

] x
D = s1,0d,

that is,H0 is resonantfi.e., vsAd ·k =0 does not implyk =0g.
In order to construct the operatorsG, R, andN we consider

]

] w
= S ]

] t
,

]

] y
D ,

so

hH0j = vsAd ·
]

] w
=

]

] t
.

If we consider an elementWsx,y,td of the algebraA, peri-
odic in time with period 1, we can write

Wsx,y,td = o
kPZ

Wksx,yde2ipkt,

and the action ofG, R, andN operators onW is given by

GW= o
kÞ0

Wksx,yd
2ikp

e2ipkt,

RW= W0sx,yd,

NW= o
kÞ0

Wksx,yde2ipkt. s3.6d

If we apply the operatorG to V given by Eq.(3.3), we
obtain

GV =
a

s2pd2 o
n,m=1

n2+m2øN2

1

sn2 + m2d3/2

3cosf2psnx+ myd + wnm− 2ptg. s3.7d

SinceV is periodic in time with zero mean value, we have
RV=0. In this case, as we have seen in the preceding sec-
tion, Eqs.s2.8d and s2.9d give the expansion of the control
term. If we add the exact expression of the control term to
H0+V, the effect on the flow is the confinement of the mo-
tion, i.e., the fluctuations of the trajectories of the particles,
around their initial positions, are uniformly bounded for any
time f20g.

FIG. 1. Contour plot ofVsx,y,td given by Eq.(3.3) for t=0, a
=1, andN=25.
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In the present paper we show that truncations of the exact
control term f are able to regularize the dynamics and to
slow down the diffusion. We compute the first terms of the
series of the exact control termsf2 and f3. From Eq.(2.9) we
have

f2sVd = − 1
2hGV,Vj,

and using the expressions ofV andGV, we have

f2sx,td = −
a2

2s2pd3 o
n1,m1

n2,m2

1

sn1
2 + m1

2d3/2sn2
2 + m2

2d3/2

3hcosf2psn1x + m1yd + wn1m1
− 2ptg,

sinf2psn2x + m2yd + wn2m2
− 2ptgj,

where h· , ·j is the Poisson bracket forx,y coordinates, i.e.,
for two generic functionsf and g depending onx,y,t, we
have

hf,gj =
] f

] x

] g

] y
−

] f

] y

] g

] x
.

From Eqs.(3.3) and (3.7) we obtain

f2sx,y,td =
a2

8p
o

n1,m1

n2,m2

n1m2 − n2m1

sn1
2 + m1

2d3/2sn2
2 + m2

2d3/2

3sinh2pfsn1 − n2dx + sm1 − m2dyg

+ wn1m1
− wn2m2

j. s3.8d

We notice that for the particular models3.3d and for the
particular choice of operatorG given by Eq.s3.6d, the partial
control term f2 is independent of time. Figure 2 depicts a
contour plot of it.

The computation off3 is given by

f3sVd = − 1
3hGV, f2j,

and substituting the expressionss3.7d and s3.8d for GV and
f2, one obtains

f3sx,y,td = −
a3

24p
o

n1,m1,n2,m2

n3,m3

sn1m2 − m1n2dfsn1 − n2dm3 − sm1 − m2dn3g
sn1

2 + m1
2d3/2sn2

2 + m2
2d3/2sn3

2 + m3
2d3/2

3sinf2psn1 − n2 + n3dx + 2psm1 − m2 + m3dy

+ swn1m1
− wn2m2

+ wn3m3
− 2ptdg. s3.9d

A contour plot off3 is depicted in Fig. 3. The computation of
the other terms of the seriess2.8d can be done recursively by
using Eq.s2.9d ssee also Ref.f20g and the Appendixd.

C. Properties of the control term

In this section, we first state that fora sufficiently small,
the exact control term exists and is regular. The proofs of
these propositions are given in the Appendix. Then we give
estimates of the partial control terms in order to compare the
relative sizes of the different terms with respect to the per-
turbation.

Concerning the existence of the control term, we have the
following proposition:

Proposition 3. If the amplitudea of the potential is suffi-
ciently small, there exists a control termf given by the series
(2.8) such thatE+V+ f is canonically conjugate toE, where
V is given by Eq.(3.3).

The proof is given in the Appendix. ForN=25, it is
shown that the control term exists fora&7310−3. As usual,
such estimates are very conservative with respect to realistic
values ofa. In the numerical study, we consider values ofa
of order 1.

Concerning the regularity of the control term, we notice
that each termfs in the series(2.8) is a trigonometric poly-
nomial with an increasing degree withs. The resulting con-
trol term is not smooth but its Fourier coefficients exhibit the
same power law mode dependence asV.

Proposition 4. All the Fourier coefficientsfnmk
ssd of the

functions fs of the series(2.8) satisfy

FIG. 2. Contour plot off2 given by Eq.(3.8) for a=1 andN
=25.

FIG. 3. Contour plot off3 given by Eq.(3.9) for t=0, a=1, and
N=25.
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ufnmk
ssd u ø

asCs

sn2 + m2d3/2,

for sn,mdÞ s0,0d. Consequently, for sufficiently small val-
ues ofa, the Fourier coefficients of the control termf given
by Eq. s2.8d satisfy

ufnmku ø
C`

sn2 + m2d3/2,

for sn,mdÞ s0,0d and for some constantC`.0.
In order to measure the relative magnitude between

Hamiltonian (3.3) and f2 or f3, we have numerically com-
puted their mean squared values:

Îkf2
2l

kV2l
< 0.13a,

Îkf3
2l

kV2l
< 0.07a2,

wherekfl=e0
1dte0

1dxe0
1dyfsx,y,td.

Another measure of the relative sizes of the control terms
is given by the electric energy density associated with each
electric field V, f2, and f3. From the potential we get the
electric field and hence the motion of the particles. We define
an average energy densityE as

E =
1

8p
kuEu2l,

where Esx,y,td=−=V. In terms of the particles, it corre-
sponds to the mean value of the kinetic energykẋ2+ ẏ2l sup
to a multiplicative constantd. ForVsx,y,td given by Eq.s3.3d,

E =
a2

8p
o

n,m=1

n2+m2øN2

N
1

sn2 + m2d2 . s3.10d

We define the contribution off2 and f3 to the energy density
by

e2 =
1

8p
ku= f2u2l, s3.11d

e3 =
1

8p
ku= f3u2l. s3.12d

For N=25, these contributions satisfy

e2

E < 0.1a2,
e3

E < 0.3a4.

It means that the control termsf2 and f3 can be considered as
small perturbative terms with respect toV when a,1. We
notice that even iff3 has a smaller amplitude thanf2, its
associated average energy density is larger fora of order 1
smore precisely foraù0.58d.

Remark on the number of modes in V. In Sec. IV, all the
computations have been performed for a fixed number of

modesN sN=25d in the potentialV given by Eq.(3.3). The
question we address in this remark is how the results are
modified as we increaseN. First we notice that the potential
and its electric energy density are bounded withN since

uVsx,y,tdu ø a o
n,m=1

`
1

sn2 + m2d3/2 , `,

E ø
a2

8p
o

n,m=1

`
1

sn2 + m2d2 , `.

Concerning the partial control termf2, we see that it is in
general unbounded withN. From its explicit form, one can
see that it grows likeN ln N ssee the Appendixd. Less is
known about the control term since it is given by a series
whose terms are defined by recursion. However, from the
proof of Proposition 3 in the Appendix, we see that the
value a of existence of the control term decreases like
1/s2N ln Nd. This divergence of the control term comes
from the fact that the Fourier coefficients of the potential
V are weakly decreasing with the amplitude of the wave
number.

Therefore, the exact control term might not exist if we
increaseN keepinga constant. However we will see in Sec.
V B that for practical purposes the Fourier series of the con-
trol term can be truncated to its first terms(the Fourier
modes with highest amplitudes). Furthermore in the example
we consider as well as for any realistic situation the value of
N is bounded by the resolution of the potential. In the case of
electrostatic turbulence in plasmaskri ,1 determines an up-
per bound fork, wherek is the transverse wave vector related
to the indicesn,m, andri the ion Larmor radius. The physics
corresponds to the averaging effect introduced by the Larmor
rotation.

Remark on the control in the Bohm regime (parameter a
larger than 1). Let us defineV0;Vst=0d and dV=V−V0.
Since the Bohm regime is defined as a regime of relatively
slow evolution of the potential(with characteristic timetv)
compared to the motion of the particles(with characteristic
time td), td,tv, one can introduce as small parametere

,td/tv and the integrable HamiltonianH̄0=H0+V0, so that

H=H̄0+eṼ with Ṽ=sV−V0d /e. This approach is only valid
for a finite time of ordertv after which one must redefineV0,

H̄0, andṼ.

IV. NUMERICAL INVESTIGATION OF THE CONTROL
TERM

With the aid of numerical simulations(see Ref.[11] for
more details on the numerics), we check the effectiveness of
the control theory developed in Sec. III by comparing the
dynamics of particles obtained from Hamiltonian(3.3) and
from the same Hamiltonian with the control termf2 given by
Eq. (3.8), and with a more refined control termf2+ f3, where
f3 is given by Eq.(3.9). We use three types of indicators of
the dynamics: diffusion coefficient, Lyapunov indicators, and
probability distribution function(PDF) of step sizes.
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A. Diffusion of test particles

The effect of the control terms can first be seen from a
few randomly chosen trajectories. We have plotted Poincaré
sections(which are stroboscopic plots with period 1 of the
trajectories ofV). In Figs. 4 and 5 is plotted the Poincaré
surfaces of section of two trajectories issued from generic
initial conditions computed without and with the control
term f2, respectively. Similar pictures are obtained for many
other randomly chosen initial conditions. The stabilizing ef-
fect of the control term(3.8) is illustrated by such trajecto-
ries. The motion remains diffusive but the extension of the
phase space explored by the trajectory is reduced.

In order to study the diffusion properties of the system,
we have considered a set ofM particles (of order 1000)
uniformly distributed at random in the domain 0øx,yø1 at
t=0. We have computed the mean square displacement
kr2stdl as a function of time,

kr2stdl =
1

Mo
i=1

M

uxistd − xis0du2, s4.1d

wherexistd=(xistd ,yistd) is the position of theith particle at
time t obtained by integrating Eq.s3.5d with initial condition

xis0d. In Fig. 6 is presentedkr2stdl for three different values
of a: a=0.7, a=0.8, anda=0.9. For therange of param-
eters we consider the behavior ofkr2stdl is always found to
be linear in time fort large enough. The corresponding
diffusion coefficient is defined as

D = lim
t→`

kr2stdl
t

.

The values ofD as a function ofa with and without control
term are presented in Fig. 7. A significant decrease of the
diffusion coefficient when the control termf2 is added can
be readily observed. As expected, the action of the control
term gets weaker asa is increased towards the strongly cha-
otic region.

B. Lyapunov indicator method

In order to get insight into the action of the control term to
the dynamics, we apply the Lyapunov indicator method. This
method provides local information in phase space. It has
been introduced to detect ordered and chaotic trajectories in
the set of initial conditions. It associates a finite-time
Lyapunov exponentn with an initial conditionx0. By look-

FIG. 4. Poincaré surface of section of a trajectory obtained for
Hamiltonian (3.3) using a generic initial condition assuminga
=0.8.

FIG. 5. Poincaré surface of section of a trajectory obtained using
a generic initial condition as in Fig. 1 and adding the control term
(3.8) to Hamiltonian(3.3) with a=0.8.

FIG. 6. Mean square displacementkr2stdl vs timet obtained for
Hamiltonian(3.3) with three different values ofa=0.7,0.8,0.9.

FIG. 7. Diffusion coefficientD vs a obtained for Hamiltonian
(3.3) (open squares) and Hamiltonian(3.3) plus control term(3.8)
(full circles).
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ing at the mapx0°nsx0d, one distinguishes the set of initial
conditions leading to regular motion associated with a small
finite-time Lyapunov exponent. The pictures of this map
show the phase space structures where the motion is trapped
and does not diffuse throughout the phase space, e.g., they
highlight islands of stability located around elliptic periodic
orbits.

Consider an autonomous flowẋ= fsxd. The Lyapunov in-
dicator method is based on the analysis of the tangent flow

dy

dt
= Dfsxdy, s4.2d

where Df is the matrix of variations of the flow. The
Lyapunov indicator is defined as the value

nsx0,Td = lniysTdi,

at some finite timeT starting with some initial conditionx0
and a generic vectory0. This definition is very close to the
one of a finite-time Lyapunov exponent. The plot ofn versus
x0 gives a map of the dynamics by highlighting regions of
stability and regions of chaotic dynamics.

For a chaotic trajectory, the value of the Lyapunov indi-
cator increases linearly with time, whereas for a regular tra-
jectory (periodic or quasiperiodic), it increases like lnt (see
rigorous results for nearly perturbed Hamiltonian systems in
Ref. [22]). So in regular regions, this Lyapunov indicator is
expected to be much lower than in chaotic regions.

Here the Hamiltonian flow is not autonomous. However,
by considering thatt is a new coordinate of the motion(and
E is its conjugate momentum), we obtain an autonomous
flow with two degrees of freedom. We notice that the equa-
tions of motion for Hamiltonian(3.3) can be written as

ẋ = RefFsxde−2iptg, s4.3d

where

Fsxd = ='Vsx,0d + i='Vsx,1/4d,

where='=s−] /]y,] /]xd and Vsx ,td is given by Eq.s3.3d.
The nonautonomous flows4.3d can be mapped into an au-
tonomous flow by considering a third equationṫ=1. The
computation of the tangent flowsof dimension 3d follows
from the matrix of variations of the autonomous flow. We
have chosen the third component of the vectory following
the evolution of the tangent flows4.2d equal to one, which
can be done without loss of generality since Eq.s4.2d is
linear in y. Therefore, it reduces to the evolution of a two-
dimensional vectory which is given by

ẏ = RefGsxde−2iptgy + 2pImfFsxde−2iptg,

whereG is the two-dimensional matrixGsxd=DF smatrix of
the variations of the vector fieldFd. Figure 8 shows the value
of nsx0,Td as a function ofT for TP f0,140g for three initial
conditionsx0: one strongly chaoticx0=s0.865,0.39d, one
weakly chaoticx0=s0.8766,0.39d, and one quasiperiodic
x0=s0.895,0.39d. The plots of the Poincaré sections of
these three trajectories up toT=1000 areshown in Fig. 9.
These figures show two chaotic trajectories for which

there is an overall linear increase of the Lyapunov indica-
tor, and one quasiperiodic motionstrapped around an el-
liptic periodic orbitd. We notice that not only the method
is able to discriminate early between regular and chaotic
motions but it is also able to detect weakly versus strongly
chaotic trajectories for rather small values ofT.

With the control termf2 given by Eq.(3.8), the equations
of motion can be rewritten as

ẋ = RefFe−2iptg + f2sxd,

wheref2sxd=='f2. The equation of evolution ofy becomes

ẏ = RefGsxde−2iptgy + 2pImfFsxde−2iptg + Df2sxdy.

With the control termf2sxd+ f3sx ,td, where f3 is given by
Eq. s3.9d, the equations of motion can be written as

ẋ = RefsF + f3de−2iptg + f2sxd,

where f3sxd=='f3sx ,0d+ i='f3sx ,1 /4d. The equation of
evolution ofy becomes

FIG. 8. Values of the Lyapunov indicatornsx0,Td as a function
of time T for three trajectories obtained for Hamiltonian(3.3) with
a=0.4 for the following initial conditions: one strongly chaotic(a)
x0=s0.865,0.39d, one weakly chaotic(b) x0=s0.8766,0.39d, and
one quasiperiodic(c) x0=s0.895,0.39d.

FIG. 9. Poincaré sections of the three trajectories of Fig. 8.
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ẏ = RefsG + g3de−2iptgy + 2pImfsF + f3de−2iptg + Df2y,

whereg3sxd=Df3.
On a grid of 10 000 initial conditionsx0P f0,1g2, we

compute nsx0,Td for T=200. Figure 10 represents the
Lyapunov indicator map fora=0.4 without control term.
Figure 11 shows for the same values of parameters, the
Lyapunov indicator map with the control termf2. The gen-
eral effect of the control termf2 is a decrease of the magni-
tude of the Lyapunov indicators. However, the stabilization
effect of the control termf2 is not uniform. There are regions
where the(partial) control term f2 fails to stabilize the tra-
jectories, e.g., in the region nearx0=s0.1,0.4d. Figure 12
plots the Poincaré section of the trajectories starting atx0
=s0.085,0.385d for Hamiltonian (3.3) with and without the
control termf2 given by Eq.(3.8). We notice that this trajec-
tory is more chaotic and more diffusive with the control term
than without.

In order to see the global stabilization effect of the partial
control termf2, we notice from the values plotted in Fig. 10
that fora=0.4 about 25% of the trajectories have a Lyapunov
indicator less than 5 atT=200 without the control termf2,
compared with 70% with the control term(from Fig. 11).
Figure 13 represents the histograms of the Lyapunov indica-

tor at T=200 for a=0.4 with and without control term. The
first peak in the upper and lower panels corresponds to the
regular component of the phase space. We clearly see that the
second peak corresponding to the chaotic component is dras-
tically reduced with the addition of the partial control term.
The effect of a more refined control term is observed in Fig.
14 for a=0.6 when the control termf2 starts to fail to reduce
significantly the chaotic part of phase space. We see that the
proportion of the regular trajectories has increased with the
addition of f3. More quantitatively, 8% of the trajectories of
the Hamiltonian without control have a Lyapunov indicator
smaller than 7 atT=200. With the addition off2, this pro-
portion is increased to 25% whereas it is around 30% with
the addition off3.

C. Horizontal step sizes

In order to investigate the effect of the control term on the
transport properties and its relationship with single trajecto-
ries, we have computed the PDF of the step sizes. Let us
define thehorizontal step size(vertical step size) as the dis-
tance covered by the test particle between two successive
sign reversals of the horizontal(vertical) component of the
drift velocity. The effect of the control is analyzed in terms
of the PDF of step sizes. Following test particle trajectories
for a large number of initial conditions, with and without
control, leads to the PDFs plotted in Fig. 15 for Hamiltonian
(3.3) without and with control term(3.8) for a=0.7. A
marked reduction of the PDF is observed at large step sizes

FIG. 10. Lyapunov indicator mapnsx0,T=200d for Hamiltonian
(3.3) for a=0.4.

FIG. 11. Lyapunov indicator mapnsx0,T=200d for Hamiltonian
(3.3) for a=0.4 with the control termf2 given by Eq.(3.8).

FIG. 12. Poincaré sections of the trajectories of(a) Hamiltonian
(3.3) and (b) Hamiltonian(3.3) with control term f2 given by Eq.
(3.8), with initial conditionsx0=s0.085,0.385d.

FIG. 13. Histograms of the Lyapunov indicators atT=200 for
a=0.4 with and without control term computed in Figs. 10 and 11.
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with control relatively to the uncontrolled case. Conversely,
an increase is found for the smaller step sizes. The control
quenches the large steps(typically larger than 0.5 fora
=0.7). Such a reduction of the probability to achieve a large
radial step will modify the transport efficiency and, in par-
ticular, reduce the diffusion coefficient.

In order to give support that the first peak of the histo-
gram of the Lyapunov indicator(see Fig. 13) is associated
with the small step sizes, we have plotted in Fig. 16 the
distribution of horizontal step sizes of the trajectories with a
small Lyapunov indicator(smaller than 7), and also the same
PDF for trajectories associated with large Lyapunov indica-
tor (larger than 7). This result gives support to the fact that
the control term reduces the diffusion of trajectories by re-
ducing chaos in the system(by the creation of invariant tori
[23], see also the global picture in the conclusion).

V. ROBUSTNESS OF THE CONTROL

In the preceding section, we have seen that a truncation of
the series defining the control term by considering the first or

the two first terms in the perturbation series ine gives a very
efficient control on the chaotic dynamics of the system.

In this section we show that it is possible to use an ap-
proximate control or to make a small error while computing
the control term and still get an efficient control of the dy-
namics.

Below, we give numerical evidence for the following
statements: the reduction of the amplitude shows that one
can inject less energy to achieve a significant control. The
truncation of the Fourier series indicates that one can sim-
plify the control term and still get a significant control. The
change of phases shows that one can introduce some error in
the phases and still get a significant control.

A. Reduction of the amplitude of the control term

We check the robustness of the control by increasing or
reducing the amplitude of the control[24]. We replacef2 by
df2 and we vary the parameterd away from its reference

FIG. 14. Histograms of the Lyapunov indicators atT=200 for
a=0.6 without control term(upper panel), with control term f2

(middle panel), and with control termf2+ f3 (lower panel).

FIG. 15. PDF of the magnitude of the horizontal step size for
Hamiltonian (3.3) with a=0.7 without the control term(open
squares), with the control termf2 (full circles), and with a truncated
control term with 12 modes(open circles).

FIG. 16. PDF of the horizontal step sizes of the trajectories with
small Lyapunov indicator(smaller than 7, full squares) and with
large Lyapunov indicator(larger than 7, open squares) for Hamil-
tonian (3.3) with a=0.4.

FIG. 17. Diffusion coefficientD vs the magnitude of the control
term (3.8) for a=0.7. The horizontal dashed line corresponds to the
value ofD without control term. The dash-dotted line is a piecewise
linear interpolation.
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value d=1. Figure 17 shows that both the increase and the
reduction of the magnitude of the control term(which is
proportional toda2) result in a loss of efficiency in reducing
the diffusion coefficient. The fact that a larger perturbation
term—with respect to the computed one—does not work bet-
ter also means that the control is “smart” and that it is not a
“brute force” effect.

The interesting result is that one can significantly reduce
the amplitude of the controlsd,1d and still get a reduction
of the chaotic diffusion. We notice that the average energy
densitye2sdd associated with a control termdf2 is equal to
e2sdd=d2e2, wheree2 is given by Eq.(3.11). Therefore, for
d=0.5, where the energy necessary for the control is one-
fourth of the optimal control, the diffusion coefficient is sig-
nificantly smaller than in the uncontrolled case(nearly factor
3).

B. Truncation of the Fourier series of the control term

We show that a reduction of the number of Fourier modes
of f2 can still significantly reduce chaotic diffusion. The Fou-
rier expansion of the control termf2 given by Eq.(3.8) is

f2 = o
n,m

fnm
s2de2ipsnx+myd, s5.1d

where fnm
s2d is

fnm
s2d =

a2

8pi
o

n1,m1

snm1 − n1mdeiswn1m1
−wn1−n,m1−md

sn1
2 + m1

2d3/2fsn1 − nd2 + sm1 − md2g3/2.

s5.2d

The truncation of the Fourier series is made by considering
the Fourier modes with an amplitude greater than or equal to
e, that is, the sum in Eq.s5.2d is restricted to the set of modes
sn,md such thatufnm

s2duùe. For example, if we considere.9
310−4, there are 12 modes in the sum, which are the
modes with wave vectors0,1d, s0,2d, s1,−1d, s1,−2d,
s1,0d, s2,0d and the opposite wave vectorssf2 is reald,
compared with the total number of modes of the fullf2
which is about2000.Figure 18 shows the contour plot of
f2 obtained with only these 12 modes. Figure 19 shows the
diffusion coefficient for the dynamics of the truncated

control term versus the number of Fourier modes kept in
the truncation off2. The reduction of the diffusionswith
respect to the uncontrolled cased also holds for a very
simplified control term containing only the few highest
Fourier modes of the full control term. If we replacef2 by
the truncation with 12 modes we see that the effect is still
a strong reduction of the diffusion coefficient, a reduction
of about 25%. The energy densitye2

s12d ssee Sec. III Cd of
this truncated control term with respect to the energy den-
sity E is

e2
s12d

E . 0.009a2, s5.3d

whereE is given by Eq.s3.10d, which is less than 1% of the
energy associated to the electric potential. It is interesting to
note that the energy density of this truncation with respect to
the one of the full control termf2 is

e2
s12d

e2
. 0.09, s5.4d

wheree2 is given by Eq.s3.11d, which is less than 10% of
the energy associated with the full control termf2. More-
over, we see from Fig. 15, where the PDF of horizontal
step sizes is plotted, that the effect of this coarse grained
control term f2 reduced to 12 modes is also to quench
large step sizes.

More generally, these results show that a partial knowl-
edge of the potential, e.g., on a grid(coarse grained), is suf-
ficient to obtain a significant control of the dynamics.

C. Change of phases inf2

We check the robustness of the control with respect to an
error introduced in the phases of the control term given by

FIG. 18. Contour plot of the truncation off2sx,yd for a=0.7
containing the 12 Fourier modes of highest amplitude.

FIG. 19. Diffusion coefficientD vs the number of Fourier
modesn in the truncation of the control termf2 for a=0.7. The
dashed line corresponds to the case without control term, the solid
line corresponds to the value of the diffusion with the full control
term f2, and the dash-dotted line corresponds to a power law inter-
polation s~n−1/2d.

CONTROL OF HAMILTONIAN CHAOS AS A POSSIBLE… PHYSICAL REVIEW E 69, 056213(2004)

056213-13



Eq. (3.8), i.e., we change the phaseswnm by w̃nm in Eq. (3.8)
by

w̃nm= wnm+ gwnm
err, s5.5d

where wnm
err are uniformly random distributed phases in

f0,2pg, g is the amplitude of the error, andwnm are the
correct phases. Figure 20 shows the diffusion coefficient ver-
sus the phase errorg for a fixed value ofasa=0.7d. We
notice that the chaotic diffusion is still significantly re-
duced by the control with a small error on the phases. The
diffusion coefficient is still strongly reduced by a factor
greater than 2 for a phase error of 5%. For small values of
g the diffusion coefficient versusg is well fitted by a
quadratic interpolation, that is,Dsgd=D0+D1g2.

VI. CONCLUSIONS

We have provided an effective strategy to control the cha-
otic diffusion in Hamiltonian dynamics using small perturba-
tions. Since the formula of the control term is explicit, we are
able to compare the dynamics without and with control. The
idea of the control is pictorially represented in Fig. 21: A
HamiltonianH0+«V is controlled by adding a control termf.
The naive choice for a control term would bef =−«V but this
would be useless since it is of the same magnitude of the
source of chaotic transport and thus would require a major
modification of the physical condition of the system of inter-
est. In this paper, we have presented a way to design an
integrable controlled HamiltonianHc with a small control
term f of order«2. This controlled Hamiltonian is conjugate
to H0 (we assume for simplicity thatRV=0). This construc-
tion of the controlled Hamiltonian works well up to some
value«1. Moreover, we have shown that the control is robust,
in the sense that one can use an approximate controlled

Hamiltonian H̃c which is not integrable but—being suffi-
ciently close toHc—generates a more regular dynamics
(presence of invariant tori) with respect toH0+«V. For in-
stance, we have shown that one can successfully use a trun-
cated control term of ordere2 and that one is allowed to
tailor it to some specific requirements on its shape, on the
energy necessary to achieve control, and also according to a
partial knowledge ofV (e.g., a truncation of the Fourier se-
ries and an error on the phases).

The invariant tori that have been created by adding the
control term f of order «2 are those which were broken by
increasing the amplitude of the perturbation, meaning that
these tori are those of a HamiltonianH0+«8V, where«8,«
(up to some smooth canonical transform close to the identity
transform). In order to illustrate this statement, we have plot-
ted in gray two regions of existence of a given invariant torus
(specified, e.g., by its frequency). The uncontrolled Hamil-
tonianH0+«V does not have this invariant torus whereas the
controlled oneHc=H0+«V+«2f does. The controlled Hamil-
tonian Hc is conjugate to the controlled HamiltonianHc8
=H0+«8V+«82f for «8,« (since they are both conjugate to
H0). SinceH0+«8V is inside the ball around the integrable
Hamiltonian Hc8, the invariant torus ofH0+«8V of the se-
lected frequency is a small deformation of the torus of the
controlled HamiltonianHc8 and hence a small deformation of
the torus of the controlled HamiltonianHc. Therefore the
invariant tori of Hc obtained by means-of control are small
deformations of the tori ofH0+«V which were broken by
increasing«.

We have applied this general technique of control to a
specific model, describing anomalous electric transport in
magnetized plasmas. In particular, we have shown that the
control term is robust, meaning that one is able to simplify it,
to reduce its amplitude or to make a small error without
changing its overall action of reducing chaotic transport.
Even though we use a rather simplified model to describe
chaotic transport of charged particles in fusion plasmas, our
result makes us believe that through some small smart modi-
fication of the electric potential a relevant reduction of the

FIG. 20. Diffusion coefficientD vs the phase errorg in the
expression(3.8) of f2 for a=0.7. The dashed line corresponds to the
case without control term, the solid line corresponds to the case
with the full control term, and the dash-dotted line corresponds to a
quadratic interpolation.

FIG. 21. Global picture of the control: The bold curved segment
of curve represents a set of integrable Hamiltonians aroundH0. The
gray circles are the domains of existence of a given invariant torus
around an integrable Hamiltonian. The gray arrows represent two
ways of controlling the HamiltonianH0+«V: the first one of order«
and the second one of order«2. The arrows fromHc to Hc8 and from
Hc8 to H0+«8V represent close to identity canonical transformations.
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turbulent losses of energy and particles in tokamaks could be
attained, for the moment at least in principle.
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APPENDIX: PROOF OF PROPOSITIONS 3 AND 4

1. Proof of Proposition 3

The terms of the series(2.8) can be written in the follow-
ing form:

fs = o
n,m,k

fnmk
ssd sinf2psnx+ myd + wnmk

ssd − 2pktg,

where the sum overk is from −s to s, and the two sums over
n and m are from −sN to sN. From the recursion formula
s2.9d, we have

fn8m8k8
ssd =

a

2s
o

n,m=1

N
mn8 − nm8

sn2 + m2d3/2 3 s− fn8−n,m8−m,k8−1
ss−1d

+ fn−n8,m−m8,k8+1
ss−1d d. sA1d

We use the following norm:

ifsi = sup
n,m,k

ufnmk
ssd u.

From Eq.sA1d, we get

ifsi ø
aifs−1i

s
sup
n8,m8

o
n,m=1

N umn8 − nm8u
sn2 + m2d3/2 .

Since,umn8−nm8uøsNsm+nd, we have

ifsi ø alifs−1i,

where

l = 2N o
n,m=1

N
m

sn2 + m2d3/2. sA2d

It follows that

ifsi ø salds−1a2−3/2,

since if1i=a2−3/2. Therefore, the seriess2.8d converges for
a,1/l. We notice that forN=25, l<135, i.e., the series
converges fora&7310−3.

Since n°m/ sn2+m2d3/2 is a positive and decreasing
function, we have

o
n=1

N
m

sn2 + m2d3/2 ø E
0

N mdn

sn2 + m2d3/2 ø E
0

` mdn

sn2 + m2d3/2.

By rescaling the integralst=n/md and using the fact that
e0

` dt/ st2+1d3/2=1, we have

l ø 2No
m=1

N
1

m
ø 2N ln N + 2gN + 1, sA3d

whereg is the Euler-Mascheroni constant. In particular, we
notice that the bound onl increases likeN ln N.

2. Proof of Proposition 4

Concerning the regularity of the functionsfs and f, we
would like to show that

ufnmk
ssd u ø

asCs

sn2 + m2d3/2. sA4d

We notice that Eq.sA4d is satisfied forf1=V given by Eq.
s3.3d for Cù1. The inequalitysA1d gives

ufn8m8k8
ssd u ø asC

s−1

s

3 o
n,m=1

N umn8 − nm8u
sn2 + m2d3/2fsn8 − nd2 + sm8 − md2g3/2.

We can always assume that bothn8 andm8 are positive since
we haveun8−nuù uun8u−nu which gives

ufn8m8k8
ssd u ø NasCs−1

3 o
n,m=1

N
m+ n

sn2 + m2d3/2fsun8u − nd2 + sum8u − md2g3/2,

where we have used the inequalityumn8−nm8uøsNsm+nd.
We have to distinguish the following cases:(i) n8.N and

m8.N, (ii ) n8øN andm8.N, and(iii ) n8øN andm8øN.
We notice that by symmetry the casen8.N and m8øN is
similar to (ii ).

For n8 ,m8.N, we haven8ø sN+1dsn8−nd and m8ø sN
+1dsm8−md. Thus we have

1

sn8 − nd2 + sm8 − md2 ø
sN + 1d2

n82 + m82 ,

which leads to

ufn8m8k8
ssd u ø

asCs−1sN + 1d3l

sn82 + m82d3/2 ,

wherel is given by Eq.sA2d.
For n8øN andm8.N, we havem8ø sN+1dsm8−md. By

using the estimatesn8−nd2+sm8−md2ù sm8−md2, we have

1

sn8 − nd2 + sm8 − md2 ø
sN + 1d2

m82 ,

and sincen8øm8,
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sN + 1d2

m82 ø
2sN + 1d2

n82 + m82 .

Thus we have

ufn8m8k8
ssd u ø

asCs−123/2sN + 1d3l

sn82 + m82d3/2 .

For n8øN andm8øN, we use the crude estimates

1

sn8 − nd2 + sm8 − md2 ø 1

and

1 ø
2N2

n82 + m82 .

Thus we have

ufn8m8k8
ssd u ø

asCs−123/2N3l

sn82 + m82d3/2 .

By denotingC=23/2sN+1d3l, Eq. sA4d is satisfied for alln,
m and for alls.

It follows that for a,1/C, the same inequality holds for
f:

kfnmkl ø
C`

sn2 + m2d3/2,

whereC`=a2C2/ s1−aCd.
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